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ABSTRACT

This paper addresses the general problem of connected
digit recognition in the telecommunication environment. In
particular, we focus on a task of recognizing digits when
embedded in a natural spoken dialog. Two di�erent design
strategies are investigated: keyword detection or word spot-
ting, and large-vocabulary continuous speech recognition.
We will characterize the potential bene�ts and describe the
main components of each design method, including acoustic
and language modeling, training and utterance veri�cation.
Experimental results on a subset of a database that includes
customers responses to the open-ended prompt \How may
I help you?" are presented.

1. INTRODUCTION

Connected digits play a vital role in many applications of
speech recognition over the telephone. Digits are the ba-
sis for credit card and account number validation, phone
dialing, menu navigation, etc.
Progress in connected digit recognition has been remark-

able over the past decade (e.g.,[2, 1]). For databases
recorded under carefully-monitored laboratory conditions
such as the Texas Instrument database, speech recogniz-
ers have been able to achieve less than 0.3% word error
rate [2]. Dealing with telephone speech has added a new
dimension to this problem. Variations in the spectral char-
acteristics due to di�erent channel conditions, speaker pop-
ulations, background noise and transducer equipment cause
a signi�cant degradation in recognition performance. This
degradation, however, can be somewhat minimized through
advances in acoustic modeling, discriminative training and
robustness, enabling speech recognition systems to operate
at about 1% digit error rate [3].
Without doubt, the ultimate objective in digit recogni-

tion is to accurately recognize digits embedded in a natural
spoken dialog. For example users' response to the prompts
\What number would you like to call?" or \May I have
your card number please?." Clearly these types of prompts
impose a new set of challenges to the problem of recogniz-
ing digits particularly when dealing with naive users of the
technology. Unlike the more general problems in ASR, such
as Switchboard, the di�culty here is not only to deal with

uent and unconstrained speech, but being able to accu-
rately recognize an entire digit string that may be encoded
by digits, natural numbers and/or alphabets. In addition,
systems must be able to accommodate for out-of-vocabulary
words, hesitation, false-start and other acoustic variations,
such as background noise and regional accent.
In this paper, we address the general problem of digit

recognition in the telecommunication environment. In par-
ticular, we focus on the task of recognizing users' responses
when prompted to say their card or phone number. This
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Figure 1. Pie charts of users' responses to (A) card number,
and (B) phone number prompts based on spoken numeric.

task is part of an experimental study for customers re-
sponding to the open-ended prompt \How may I help you?"
[5]. We �rst characterize the problem using a database of
2178 spoken utterances. The objective then is to study two
rather di�erent strategies to performing digit recognition;
a keyword detection approach versus a large-vocabulary
speech recognition approach. We will describe a prototype
system and discuss the main components of each approach,
including acoustic and language modeling, training and ut-
terance veri�cation. Finally we will report on experimental
results comparing the performance of the two systems in
terms of accuracy and speed.

2. DATABASE ANALYSIS

The experimental database included over 20,000 transac-
tions of which a smaller subset of 2178 utterances rep-
resented customers' responses to card and phone number
queries [4]. This speaker-independent sub-database, which
we will refer to as the digit database, has been partitioned
into 1552 utterances for training and 626 utterances for test-
ing. Utterances ranged from 1 to 45 words in length, of
which 15% of the words were non-digits.
To calibrate the di�culty of this task, we subdivided

the digit database based on two sets of results. The �rst,
which is displayed in Figure 1 in the form of pie charts,
is a partitioning of the data according to three categories:
(a) numeric, which includes the digits, natural numbers
and alphabets, (b) embedded numeric, which includes those
numeric that have been spoken among other vocabulary
words, and (c) no numeric, which includes utterances not
containing any numeric keywords. The pie charts indicate
that the distribution of users' responses based on spoken nu-
meric is di�erent for the card and phone number prompts.
Furthermore, a large proportion of users prefer not to re-
spond with numeric keywords alone. In the case of the
phone number prompt, 43% of the utterances contained em-
bedded numeric and 9% included no numeric.
The second result is displayed in Figure 2 which shows

a subdivision of the digit database according to ten di�er-
ent categories. This includes digits only (1-9, oh and zero),
embedded digits (digits among other vocabulary words),
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Figure 2. Classi�cation of the digit database as a function of
vocabulary and call type.

natural numbers (e.g., hundred, eleven, etc.), alphabets
(e.g., A, H, etc.), restarts (false starts, hesitations and
corrections), accent (distinct regional dialect and accent),
fast speech (>1.5 times faster than average speech rate),
noise (severe background speech, music and noise), garbage
(extraneous or uninformative speech) and cuts (utterances
with incomplete words). The statistics on this database
are signi�cantly di�erent than most of the databases that
we have previously encountered. Nearly half of the ut-
terances included digits only as opposed to almost 100%
for the databases reported in [3]. The new challenge this
database presents is the need to accurately recognize em-
bedded digits, natural numbers, alphabets, restarts and ex-
traneous speech which collectively constituted about half
of the data. There are also high proportions of fast speech,
cuts and severe background noise.

3. SYSTEMS FOR CONNECTED DIGITS

There are two schools of thoughts when designing systems
to recognize connected digits. The �rst is to consider the
task as a detection problem where the objective is to spot
digits in a spoken dialogue. This design strategy is similar
to that pursued in our previous studies [3, 9]. The second
method is to treat the task as a large-vocabulary continuous
speech recognition problem where digits would be merely a
small subset of the active vocabulary in the lexicon. Is-
sues concerning acoustic and language modeling, training
and utterance veri�cation for the two design methods are
described next.

3.1. Acoustic Modeling

For the �rst design method (WS), a set of left-to-right con-
tinuous density hidden Markov models (HMMs) were ap-
plied which captured all possible inter-digit coarticulation
[7]. Each digit was modeled by three segments, a head, a
body and a tail. A digit had one body and multiple heads
and tails depending on the preceding and following context.
HMMs consisted of three to four states, each having a mix-
ture of four Gaussian distributions.
For the second design method (LVASR), two sets of

context-independent phones were used; one was dedicated
for the numeric and the other for the remaining vocabulary
words. The choice of this design strategy was motivated
by the need to maintain real-time operation while provid-
ing high accuracy on continuous digit recognition. Each
phone set consisted of forty left-to-right continuous density
HMMs, with three states each and twenty four Gaussian
components per state.

To accommodate for extraneous speech and background
noise events, both methods introduced three �ller models
having di�erent state topologies, with twenty four Gaussian
distributions per state. This resulted in 276 units for WS
and 83 units for LVASR.

3.2. Language Modeling

The two design methods for acoustic modeling enable us to
exploit two fairly di�erent approaches to language model-
ing. The �rst approach, a deterministic grammar that is
essentially knowledge-driven, was applied in WS to con-
strain the length and characteristic of the digit string. For
the phone numbers, this grammar was designed to accom-
modate for local, long distance and international calls. For
the card numbers, the grammar was designed to accom-
modate for most available credit cards in the market that
ranges from ten to sixteen digits in length.
The second approach which was used in LVASR is based

on a stochastic �nite state machine. This language model,
provided by Riccardi et. al [10], was automatically learned
from the training data using a variable N-gram stochastic
automaton. This particular design includes back-o� mecha-
nism and enables parsing of any arbitrary sequence of words
sampled from a given vocabulary.

3.3. Training

Training is carried out in two phases using all the avail-
able training corpus, X. Maximum likelihood estimation
(MLE) is performed followed by minimum classi�cation er-
ror (MCE) training [6]. While in MLE, the objective is to

compute a new set of recognition models, �̂, through max-
imizing a log likelihood function,

�̂ = arg max
�

g(X;W0; �); (1)

in MCE training, we aim to compute �̂ by minimizing a
smoothed error function:

(�̂; �̂) = argmin
�;�

f1 + e
��d(X;�)g�1; � > 0; (2)

where d(X;�), the misclassi�cation distance, is de�ned as

d(X;�) = �g(X;W0; �) + logf
1

N

NX

n=1

e
g(X;Wn;�)g: (3)

W0 is the word sequence for the \true" events while Wn are
considered as competing hypotheses and can be generated
by an N-best search.
For MLE, the training process for WS is conceptually

similar to that for LVASR and di�ers strictly in the me-
chanics. In the case of WS, non-digit and extraneous
speech segments are treated as out-of-vocabulary events for
optimizing the �ller models. On the other hand, the �ller
models for LVASR are trained using 0:4% of the words in
the transcription of W0 that do not appear in the training
dictionary, as well as other extraneous speech events.
For MCE training, the challenge is to optimize the acous-

tic models while dealing with task-speci�c language models.
Clearly for the case of WS, dealing with a deterministic
non-weighted grammar simpli�es the training process sig-
ni�cantly. In fact, training in this framework provides not
only improved discrimination among digits, but also be-
tween digits and other vocabulary words. For LVASR, the
use of a stochastic language model in this large vocabulary
framework, presents several new challenges. First, training
needs to be relatively fast. Second, training should be se-
lective, namely, numeric keywords should bene�t the most.



Third, though the objective function in Equation 2 needs
to accommodate for the language model, it should also en-
able the acoustic model parameters to be trained relatively
freely of the constraints imposed by the grammar. Unlike
the study reported in [8], replacing the objective function
with a phone error objective did not yield any improvement
in performance.
In our framework, an e�cient implementation of MCE

along with fast N-best search enabled models to be trained
about twice real time. Assigning dedicated sets of units
for modeling numeric versus other vocabulary words was
crucial in providing selective discriminative training. Fur-
thermore, our framework enabled the acoustic and language
models to be tightly integrated, a feature that was essen-
tial in improving the overall system performance. Detail
information on the extension of MCE training to large vo-
cabulary recognition will be published at a later date.

3.4. Utterance Veri�cation

An important component of a successful spoken dialog sys-
tem is the ability to identify out-of-vocabulary utterances
and utterances that are poorly recognized. This is partic-
ularly important for digit recognition since it provides the
system with a veri�cation measure of con�dence that deter-
mines whether or not to automate the call. In [9], we con-
sidered the problem of utterance veri�cation for connected
digits as a testing statistical hypothesis where the task is to
test the null hypothesis that a given digit exist in a segment
of speech against the alternative hypothesis which assumes
the digit or digit string does not exist within the speech
segment. A dedicated set of veri�cation models was intro-
duced which provided each digit string with a con�dence
score.
In this study, a con�dence score, CS(�), is computed as a

normalized likelihood ratio measure such that

CS(X;�) = �d(X;�): (4)

This formulation is consistent with our discriminative train-
ing paradigm since minimizing the misclassi�cation distance
implies maximization of CS(�). In practice, CS(�) was com-
puted using two best candidates.

4. EXPERIMENTAL RESULTS

The objectives of the experiments presented in this section
are two folds:

1. Contrast the two di�erent approaches to digit recog-
nition: word spotting (WS) versus large vocabulary
recognition (LVASR)

2. Characterize the major sources of errors for connected
digits within natural spoken dialog.

All experiments have been performed using the AT&T's
Watson speech recognition system [11]. For feature extrac-
tion, an input signal, sampled at 8 kHz, was pre-emphasized
and grouped into frames of 30 msec durations at every in-
terval of 10 msec. Each frame was Hamming windowed,
Fourier transformed and then passed through a set of 22
triangular band-pass �lters. Twelve mel cepstral coe�-
cients were computed by applying the inverse discrete co-
sine transform on the log magnitude spectrum. To reduce
channel variations while still maintaining real-time perfor-
mance, each cepstral vector was normalized using cepstral
mean subtraction with an operating look-ahead delay of 30
speech frames. To capture temporal information in the sig-
nal, each normalized cepstral vector along with its frame
log energy were augmented with their �rst and second or-
der time derivatives. The energy coe�cient, normalized at
the operating look-ahead delay, was also applied for end-
pointing the speech signal. Recognition was performed

through standard Viterbi beam search over a dictionary of
3.6K words and perplexity 14 [5].
Table 1 presents the performance of WS and LVASR

as a function of call type. Two di�erent measurements are
reported. The �rst re
ects the performance on digits and
the second on the entire vocabulary set. In the case of WS
only the former measurement is reported since the system
was set to recognize digits only. For either measurement,
both the word and string error rates are displayed.

Card Number Phone Number
Digit All Digit All

WS 7.4/42.4 - 14.8/48.8 -
LVASR 5.3/35.7 9.0/43.4 7.9/34.8 15.7/48.1

Table 1. Performance (word/string) of WS and LVASR for
users' responses to card and phone number queries.

The three most striking results in Table 1 are the fol-
lowing: (a) The large-vocabulary approach (i.e., LVASR)
does signi�cantly better on digit recognition than the de-
tection approach (i.e.,WS); (b) The performance on users'
responses to card number is generally better than that for
phone number, a result that can be implied from Figure 1
due to the higher number of utterances with numeric only;
(c) The digit error rate is substantially lower than the av-
erage word error rate which can be attributed to better
acoustic modeling and more data availability for digits.
The performance on digits only for both call types com-

bined are shown in Figure 3. The graphs display the digit
and string error rates as a function of processing speed on
an SGI R10000 machine. Varying the speed of the decoder
has been obtained by changing the operating beam width.
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Figure 3. Digit and string error rates versus processing speed
per audio second for WS and LVASR.

For either method, the \knee" points on the curves are
well below real-time. One interesting observation, however,
is that the large-vocabulary approach is only a factor of two
slower than the detection approach.
One possibility for improving system performance is

through utterance veri�cation. Figure 4 shows the string er-
ror rate as a function of rejection rate forWS and LVASR.
These measurements have been recorded by performing a
likelihood ratio test, where each string is assigned a con�-
dence score (see Equation 4), and strings whose scores that
exceed a given veri�cation threshold are rejected. Figure 4
has been generated by varying the value of this threshold
and tabulating the string error rate following rejection.
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Figure 4. Utterance veri�cation performance for (A) digits
only, and (B) entire vocabulary set.

Figure 4(A) shows the veri�cation performance for both
methods on the digit vocabulary. This �gure demonstrates
that utterance veri�cation is able to perform a reasonable
job at identifying out-of-vocabulary word strings and in-
correctly recognized strings. Figure 4(B) shows the \true"
overall performance of LVASR upon rejection. From this
�gure, it is possible to extract possible operating points.
For example, at 25% and 50% rejection rates, the string
error rate reduces from 48% to 34% and 20%, respectively.

To characterize the sources of errors in both methods,
Figure 5 displays the digit error rate based on the classi-
�cation strategy set forth in Figure 2. Each bar which is
associated with a di�erent class of data represents the er-
rors made on digits only. Not surprisingly, WS outperforms
LVASR in both the categories digits only and background
noise. The major source of errors on digits is when they are
embedded among other vocabulary words, especially nat-
ural numbers. For example, the digit error rate for WS
rises from 2.8% to 14.0% when other vocabulary words are
present, and to 30% when natural numbers are present.
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Figure 5. Digit error rate for (A) WS and (B) LVASR as a
function of the vocabulary type and the acoustic characteristics
of the speech signal.

5. SUMMARY

A characterization of the problem of recognizing digits em-
bedded in a spoken dialog has been presented in this paper.
On a database of users' responses to card and phone num-
ber prompts, we found only half of the utterances to include
strictly connected digits. Two design methods have been
investigated. The �rst considered the problem as a digit
spotting task where as the second treated it as a large-
vocabulary speech recognition task. For each method we
addressed several aspects of the recognition module includ-
ing acoustic and language modeling, training and utterance
veri�cation. Our results demonstrate that (a) LVASR per-
forms better than WS for all classes of data except when
strictly digits are present, and (b) a large proportion of
the errors are attributed to when digits are embedded with
other vocabulary words, especially natural numbers and
alphabets. For these classes of data, WS was inferior to
LVASR even though it operated twice as fast. At a 25%
string rejection rate, the string and digit string error rates
when using LVASR were 34% and 24%, respectively.
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