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ABSTRACT

Adaptive filters are used in a number of applications, many
of which can benefit from a reduction in power. In this pa-
per we present derivations of the approximate expressions
used in [1] for the increase in mean square error of the LMS
adaptive algorithm when the total processing power is de-
creased.

1. INTRODUCTION

The power consumed by the LMS adaptive algorithm can
be reduced by a reduction of the number of bits used to rep-
resent the data and control variables. Bit width reduction,
however, generally entails a degradation in algorithm per-
formance, as measured by steady state mean square error
(MSE). This paper provides an analysis of MSE degrada-
tion versus power reduction for the LMS algorithm.

The LMS algorithm was introduced by Widrow [2] and
is one of the most common adaptation algorithms found
in practical systems such as channel equalizers [3]. We
consider a quantized version of the LMS algorithm, called
QLMS, which is an LMS algorithm implemented with sep-
arate uniform scalar quantizers in the data path and the filter
coefficient path, where the quantizers can have different res-
olutions.

We first present a formula for the increase in steady state
mean square error (MSE) due to quantization which gener-
alizes the formulas of Caraiscos and Liu [4] to the case of
complex data and coefficients. We then derive the optimal
bit-allocation factor which minimizes the increase in MSE
subject to a total power constraint. We then show that, using
this optimal allocation factor, the relation between the LMS
algorithm’s performance and its power consumption can be
derived.
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2. THE QUANTIZED LMS ADAPTIVE
ALGORITHM

The standard LMS algorithm adapts its filter coefficients in
an attempt to minimize the quadratic surface specified by
the mean squared error:E[jyk � ŝkj

2] [2] whereyk is a
desired training signal and̂sk is the filter output. Ifwk is
the filter coefficient (weight) vector andxk is the filter input
vector of lengthp, then the LMS update equation is:

wk+1 = wk + � xk
�
yk � xHk wk

�
: (1)

where� is the gain parameter.
Let the operatorsQd[�] andQc[�] represent uniform scalar

quantization toBd + 1 andBc + 1 bits, respectively. If we
quantize all data toBd+1 bits and all coefficients toBc+1
bits, then the quantized LMS update equation becomes:

wk+1 = wk +Qc (�Qd(xk) � e
0

k) (2)

where

e0k = Qd(yk)�Qd

�
Qd(x

H
k ) �Qc(wk)

�
: (3)

is the quantized error signal.

3. POWER CONSUMPTION OF LMS ALGORITHM

In the update formula given by (2) and (3), the calculation of
the inner productQd

�
Qd(x

H
k ) �Qc(wk)

�
requiresp com-

plex multiplications of numbers represented withBd + 1
bits. (Although the weight vector is quantized toBc + 1
bits, the product is stored inBd + 1 bits and therefore, we
will assume the multiplication is done inBd+1 bits.) In ad-
dition, this calculation requiresp � 1 complex additions of
Bd+1 bits. Subtracting this inner product fromQd(yk) re-
quires an additional complex addition ofBd + 1 bits. Next,
multiplying this quantity(e0k) by Qd(xk) we havep addi-
tional complex multiplications ofBd + 1 bits. Note that
the product will be stored inBc + 1 bits. If we assume
the number� is a power of 2 and hence multiplication by
it requires only a bit shift, we are left with the addition by
wk. This operation requiresp complex additions ofBc + 1



bits. Therefore, the LMS update formula requires a total of
2p complex multiplications ofBd +1 bits,p complex addi-
tions ofBd+1 bits, andp complex additions ofBc+1 bits.
In terms of total real operations, we have8p multiplications
of Bd+1 bits,4p additions ofBd+1 bits, and4p additions
of Bc + 1 bits.

In aBd+1 bit table lookup multiplier, each multiplication
requires three table lookups and oneBd bit addition (no sign
bit). Therefore, in the LMS update formula, we have4p
additions ofBd + 1 bits, 4p additions ofBc + 1 bits, 8p
additions ofBd bits, and24p table lookups. An addition of
B bits requiresB�1 full adders and 1 half adder. Therefore,
we have16p half adders and4p(3Bd+Bc�2) full adders in
addition to the24p table lookups. Now, each full adder uses
6 logic gates while each half adder uses 2 gates. Therefore,
we have a total of24p(3Bd+Bc�2)+32p logic gates and
24p table lookup operations.

Next we define�g to be the average power consumed per
logic gate during an iteration of LMS, and�t to be the av-
erage power per table lookup per bit. Then we have the fol-
lowing expression for total power dissipation per iteration
of LMS:

PT = [24p(3Bd +Bc � 2) + 32p]�g + 24p(Bd�t): (4)

This expression is linear in the number of bitsBd and
Bc and assumes fixed point complex arithmetic and mul-
tiplication using table lookup as opposed to adding partial
products.

4. PERFORMANCE OF LMS ALGORITHM

Using the same approach as Caraiscos and Liu [4], we ob-
tain an expression for the steady-state increase in MSE of
the complex LMS algorithm due to quantization, under a
circular Gaussian assumption onxk. We assume that the
sequenceyk has been properly scaled to prevent overflow in
the calculations.

We define:

�2d =
1

12
2�2Bd ; �2c =

1

12
2�2Bc : (5)

These are the variances of the quantization noises added to
the data and coefficients, respectively. We also use primed
symbols to represent quantized values and define the fol-
lowing quantities:

x0k = xk + �k

y0k = yk + �k

w0

k = wk + �
k
: (6)

The components of the vector�k and�k are complex num-
bers whose real and imaginary parts are assumed uncorre-
lated and have variances�2d. Therefore, the variance of�k
and of each component of�k is 2�2d.

We can now calculate the quantized value of the filter out-
put:

ŝ0k = Qd(x
0H
k w0

k) = xHk wk + xHk �k + �Hk wk + �k (7)

where �k is a complex quantization noise with variance
2p �2d. This variance arises as a result of quantizing the
individual products of the inner productx0Hk w0

k and then
summing them [4]. We ignore all second-order noise terms.

The total output error is now:

yk � ŝ0k = (yk � xHk wk)� (xHk �k + �Hk wk + �k) (8)

The first term on the right hand side of of (8) is the error of
the unquantized algorithm. The second term is the error due
to quantization and will be denotedeq. Similar to [4], these
terms are uncorrelated. Also,�k, �k, �

k
, and�k are as-

sumed uncorrelated. We then have the following expression
for the increase in MSE due to quantization:

�q = E[jeqj
2] = E

h
jxHk �kj

2 + j�Hk wkj
2 + j�k j

2
i
: (9)

The last term,E[j�kj
2] is equal to2p �2d. For the term

E[j�Hk wkj
2] we obtain:

E[j�Hk wkj
2] = 2�2d E[jwkj

2]: (10)

Note that this differs from the real case studied in [4] by a
factor of 2. In the steady state, and assuming� is small, this
becomes:

E[j�Hk wkj
2] = 2�2d jw

oj2: (11)

To calculateE[jxHk �kj
2] we invoke the assumption that

xk is a circularly Gaussian random vector and� is small. In
the steady state, this gives:

E[jxHk �kj
2] =

p �2c
�

: (12)

Now, using (9), (11), (12), and (5) we obtain the final result:

�q = �c 2
�2Bc + �d 2�2Bd (13)

where

�c =
p

12�
; �d =

kwok2 + p

6
: (14)

The first term in the expression (13) is the MSE due only
to quantization of the filter coefficients while the second
term represents the MSE due to quantization of the data.
Note that�q increases inp at a linear rate, decreases in� at
an inverse square root rate, and decreases inBd andBc at
an exponential rate. Therefore, the total number of bits allo-
cated gives more leverage over excess MSE than any other
of the design parameters.

With these relations the increase in MSE due to quantiza-
tion, �q , can be plotted as a function ofBd andBc. A plot
for the increase in MSE occurring forkwok = p = 2, and
� = 0:1 is given in figure 1.
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Figure 1:Excess MSE due to quantization as a function of
Bd andBc

5. OPTIMAL BIT ALLOCATION FACTOR

We now derive the optimal bit-allocation factor which min-
imizes the increase in MSE due to quantization of the data
and filter coefficients subject to a total power constraint.

Assume that there are a total ofBT bits plus 2 sign bits
which are available to allocate between data and coeffi-
cients, i.e. BT = Bd + Bc. Further define the data bit
allocation factor� = Bd=BT . Then we have the obvious
relations

Bd = �BT ; Bc = (1� �)BT : (15)

and we can write (13) as:

�q = �c2
�2(1��)BT + �d2

�2�BT : (16)

In the following, we show that�q is convex in� for
BT � 2 and thus the optimal� can be found by setting
the derivative equal to zero.

Under the constraint onPT , we can use (4) and (15) to re-
express the total combined number of bitsBT as a function
of � andPT

BT =
PT + 16p�g

p[�(48�g + 24�t) + 24�g]
(17)

Now we define the following constants:

A �
PT + 16p �g

p
; (18)

B � 48 �g + 24 �t; C � 24 �g:

Then from (17) we have:

BT =
A

B�+ C
(19)

Differentiating (16) with respect to� gives:

d�q
d�

= ln 2 �c 2
�2(1��)BT �

d

d�
[�2(1� �)BT ] +

ln 2 �d 2
�2� BT �

d

d�
[�2� BT ] (20)

Differentiating again, we have:

d2�q
d�2

= ln 2 �c 2
�2(1��)BT

�
d2

d�2
[�2(1� �)BT ] +

ln 2

�
d

d�
[�2(1� �)BT ]

�2
#
+

ln 2 �d 2
�2�BT

�
d2

d�2
[�2�BT ] +

ln 2

�
d

d�
[�2�BT ]

�2
#
: (21)

Using (19) and (21) we have:

d2�q
d�2

= ln 2 �c 2
�2(1��)BT

�
�
4AB(B + C)

(B�+ C)3
+

ln 2 �
4A2(B + C)2

(B�+ C)4

�
+

ln 2 �d 2
�2�BT

�
4ABC

(B�+ C)3
+

ln 2 �
4A2C2

(B�+ C)4

�
: (22)

Now �q is convex if d
2�q
d�2

is positive. From (22), it is clear

that d
2�q
d�2

will be positive if the following condition is met:

ln 2 �
4A2(B + C)2

(B�+ C)4
>

4AB(B + C)

(B�+ C)3
: (23)

This is equivalent to

A >
B(B�+ C)

ln 2(B + C)
: (24)

Using (19), this becomes:

PT >
N

ln 2
�
B(B�+ C)

B + C
� 16p �g : (25)

Now, using (17), this condition will be satisfied if and only
if the following condition is satisfied:

BT >
B

ln 2(B + C)
(26)

which is equivalent to

BT >
1

ln 2

�
1�

24�g
72�g + 24�t

�
: (27)



The term on the right hand side of (27) is clearly less than

1= ln 2. This means thatd
2�q
d�2

will be positive if BT >

1= ln 2. This condition is clearly true under the assumption
BT � 2. Therefore,�q is a convex function of�.

To solve for���, the optimal bit allocation factor, we set
d�q
d�

equal to zero. After some algebraic manipulation, this
gives the optimal allocation factor:

��� =
log2

h
24�g�d

(72�g+24�t)�c

i
24�gp

PT+16�gp
+ 2

� log2

h
24�g�d

(72�g+24�t)�c

i
(48�g+24�t)p
PT+16�gp

+ 4
; (28)

which gives the corresponding minimum MSE increase:

min
�

�q = �c 2
�2(1����)BT + �d 2�2���BT

whereBT is given in (17).
Observe that the optimal bit allocation factor��� con-

verges to the standard allocation1=2 as the total power con-
straintPT is relaxed to infinity. This is the regime where
the standard allocation is optimal: allocate an equal num-
ber of bits to data as to filter coefficients. As register length
decreases or convergence speed increases, the standard al-
location becomes suboptimal.

6. POWER VS. MEAN SQUARE ERROR

Figure 2 shows thePT -constrained optimal data bit alloca-
tion factor��� as a function ofPT superimposed on a plot
of the increase in MSE due to quantization. The power co-
efficients used are�g = 1 milliwatt and�t = 10 milliwatts.
The vector length isp = 2. Note that MSE does not degrade
significantly untilPT falls below approximately1:2 Watts
(normalized). At this breakdown point the optimal data bit
allocation factor is approximately�� = 0:25. We can use
relation (17) with� = ��� to find the correspondingBT as
a function ofPT . We find thatPT = 1:2 corresponds to
BT � 6, but the optimal��� tells us to allocate only1 bit
plus sign to the data and5 bits plus sign to the filter coeffi-
cients. This reduction is because the coefficient operations
�c dominate the data factor�d in the relation (13).

7. CONCLUSION

We have derived expressions for the optimal bit allocation
for adaptive LMS algorithms under a total power constraint.
This expression can easily be specialized to a specific hard-
ware implementation for computation of the number of bits
to allocate to data and filter coefficients. A general con-
clusion is that the standard design strategy of allocating an
equal number of bits to the data and filter coefficients is op-
timal only as the power gets very large. For typical LMS
implementations, it is optimal to allocate more bits to the
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Figure 2:Optimal data bit allocation factor underPT con-
straint and total MSE as function ofPT .

coefficients than to the data. In particular, we have found
that for an LMS algorithm implemented with fixed point
arithmetic and using table-lookup multiplication, it is pos-
sible to reduce the total number of bits to 2 data bits and 6
coefficient bits without significant increase in steady-state
MSE.
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