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ABSTRACT 2. THE QUANTIZED LMS ADAPTIVE

o ' o ALGORITHM
Adaptive filters are used in a number of applications, many

of which can benefit from a reduction in power. In this pa- The standard LMS algorithm adapts its filter coefficients in

per we present derivations of the approximate expressionsan attempt to minimize the quadratic surface specified by

used in [1] for the increase in mean square error of the LMS the mean squared errofZ[|y; — 3x|?] [2] wherey;, is a

adaptive algorithm when the total processing power is de-desired training signal ang, is the filter output. Ifw,, is

creased. the filter coefficient (weight) vector ang, is the filter input
vector of lengthp, then the LMS update equation is:

1. INTRODUCTION Weir = wy, + oz (v — 2wy . (1)

The power consumed by the LMS adaptive algorithm can Where is the gain parameter. _

be reduced by a reduction of the number of bits used to rep- L€t the operatorg,[-] andQ).[] represent uniform scalar

resent the data and control variables. Bit width reduction, quantization ta3; + 1 andBC + 1 hits, res.pgctlvely. If we

however, generally entails a degradation in algorithm per- quantize all data td; + 1 bits and all coefficients 1. +1

formance, as measured by steady state mean square err&its, then the quantized LMS update equation becomes:

(MSE). This paper provides an analysis of MSE degrada- . /

tion versus power reduction for the LMS algorithm. Wiy = Wi+ Qe (HQa(zy) - €1) 2)
The LMS algorithm was introduced by Widrow [2] and where

is one of the most common adaptation algorithms found

in practical systems such as channel equalizers [3]. We e, = Qalyr) — Qa (Qalzy)) - Qclwy)) - Q)

consider a quantized version of the LMS algorithm, called . . .

QLMS, which is an LMS algorithm implemented with sep- Is the quantized error signal.

arate uniform scalar quantizers in the data path and the filter

coefficient path, where the quantizers can have differentres-3. POWER CONSUMPTION OF LMS ALGORITHM

olutions.

We first present a formula for the increase in steady state!" the update formula giver}{by (2) and (3), the calculation of
mean square error (MSE) due to quantization which gener—the mner.pr_odu.ch (Qa(zy') - Qc(wy)) requiresp com-
alizes the formulas of Caraiscos and Liu [4] to the case of PIEx multiplications of numbers represented wif + 1
complex data and coefficients. We then derive the optimal 2itS- (Although the weight vector is quantized & + 1
bit-allocation factor which minimizes the increase in MSE b'_ts’ the product is s'to.red ,'Bd,+ 1 bits and thgrefore, we
subject to a total power constraint. We then show that, using*Vill 2ssume the multiplication is done #, +1 bits.) In ad-
this optimal allocation factor, the relation between the LMS dition, this calculation requirgs — 1 complex additions of

algorithm’s performance and its power consumption can beBd_+ 1 bits. SL_‘F’”aC“r‘g this inner_product fro@y(yk) re-
derived. quires an additional complex addition Bf; + 1 bits. Next,

multiplying this quantity(e},) by Q4(z,) we havep addi-
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bits. Therefore, the LMS update formula requires a total of We can now calculate the quantized value of the filter out-

2p complex multiplications ofB; + 1 bits, p complex addi- put:

tions of B, + 1 bits, andp complex additions oB. + 1 bits.

In terms of total real operations, we haemultiplications

of By + 1 bits, 4p additions ofB, + 1 bits, anddp additions where 7 is a complex quantization noise with variance

of B, + 1 bits. 2p o3. This variance arises as a result of quantizing the
InaB;+1 bittable lookup multiplier, each multiplication  individual products of the inner produg Hw;c and then

requires three table lookups and dBgbit addition (nosign  summing them [4]. We ignore all second-order noise terms.

bit). Therefore, in the LMS update formula, we haye The total output error is now:

additions of B; + 1 bits, 4p additions ofB. + 1 bits, 8p R

additions ofBy bits, and24p table lookups. An addition of ¥k — Sk= (e — z'wy) = (2f'p, +afwy +m)  (8)

B bits requires3 —1 full adders and 1 half adder. Therefore, The first term on the right hand side of of (8) is the error of

we havel6p half adders andp(3B,+ B, —2) fulladdersin  the unquantized algorithm. The second term is the error due

addition to the24p table lookups. Now, each full adder uses to quantization and will be denoteg. Similar to [4], these

6 logic gates while each half adder uses 2 gates. Thereforejerms are uncorrelated. Alsay,, S, Py andn, are as-

we have atotal 024p(3B, + B. — 2) + 32plogic gates and  sumed uncorrelated. We then have the following expression

8 = Qa(zywy) = 2wy, + 2’ p, + afwy, +me (7

24p table lookup operations. for the increase in MSE due to quantization:
Next we define), to be the average power consumed per A A
logic gate during an iteration of LMS, ang to be the av- & = Elleg|*] = E |lzi’p, I” + laf wy |* + |nk|2] )

erage power per table lookup per bit. Then we have the fol-

lowing expression for total power dissipation per iteration _ The last termE[|n,|*] is equal to2p o7. For the term
of LMS: E[|lafw,|?] we obtain:

H —
Pr = [24p(3By + Be — 2) + 32pn, + 24p(Bany).  (4) Bllai wy, ") = 207 Bllw, ). (10)

This expression is linear in the number of hity and :}'Ote th?tztr:'s (rj]lffers f(rjom the rea(ljcase st-u.dled ITI [4r]]_by a
B, and assumes fixed point complex arithmetic and mul- actor of 2. In the steady state, and assuming small, this

tiplication using table lookup as opposed to adding partial becomes:
products. Ellafw, ] = 207 |lw°|?. (11)

To calculateE[|g£I£k|2] we invoke the assumption that
z,, is a circularly Gaussian random vector gnis small. In

Using the same approach as Caraiscos and Liu [4], we ob-the steady state, this gives:

tain an expression for the steady-state increase in MSE of
the complex LMS algorithm due to quantization, under a
circular Gaussian assumption ap. We assume that the
sequenceg; has been properly scaled to prevent overflow in

4. PERFORMANCE OF LMS ALGORITHM

2
p O-c
Ellzi’p, I’] = - (12)

Now, using (9), (11), (12), and (5) we obtain the final result:

the calculations. & =ap.27%Be ya, 27284 (13)
We define:
) . where
2 —2B 2 —2B .
oy = ——=27°74, o, = ——=2777-. 5 o[|2
d™ 19 12 (5) QCZL, ad:w_ (14)
12p 6

These are the variances of the quantization noises added to ] ) . .
the data and coefficients, respectively. We also use primed The firsttermiin the expression (13) is the MSE due only
symbols to represent quantized values and define the fol-f0 quantization of the filter coefficients while the second

lowing quantities: term represents the MSE due to quantization of the data.
Note that¢, increases i at a linear rate, decreasesirat
z, = T+ an inverse square root rate, and decreasds;iand B, at
v = uyr+ B an exponential rate. Therefore, the total number of bits allo-
o cated gives more leverage over excess MSE than any other
wy = W tp,. (6) .
of the design parameters.
The components of the vectay, andg;, are complex num- With these relations the increase in MSE due to quantiza-
bers whose real and imaginary parts are assumed uncorretion, &,, can be plotted as a function &; and B.. A plot
lated and have variance§. Therefore, the variance o, for the increase in MSE occurring fdw°|| = p = 2, and

and of each component of, is 207. u = 0.11is given in figure 1.
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Figure 1:Excess MSE due to quantization as a function of

B,y and B,

5. OPTIMAL BIT ALLOCATION FACTOR

We now derive the optimal bit-allocation factor which min-
imizes the increase in MSE due to quantization of the data

and filter coefficients subject to a total power constraint.
Assume that there are a total Bfr bits plus 2 sign bits

which are available to allocate between data and coeffi-

cients, i.e. By = By + B.. Further define the data bit
allocation factorp = By/Br. Then we have the obvious
relations

Bd = pBT, BC - (1 - p)BT. (15)
and we can write (13) as:
& = o 2721 ABT 4 g 07208 (16)

In the following, we show that, is convex inp for
Bp > 2 and thus the optimab can be found by setting
the derivative equal to zero.

Under the constraint oR;-, we can use (4) and (15) to re-
express the total combined number of bits as a function
of p and Py

Pr + 16pn,

Br = a7)
"7 plp(48n, + 24m,) + 24n,]
Now we define the following constants:

A Pr + 16p 1, , (18)

p
B = 48n, + 241, C =24n,.
Then from (17) we have:
A
Br = 19
T=H,10 (19)

Differentiating (16) with respect tp gives:

d¢, —o(1— d
=4 = In2aq.2720=MBr . __[_9(1-p)B
dp n2a dp[ (1-p)Br] +
In2 gy 272 Br. i[—Qp Br] (20)
dp
Differentiating again, we have:
d2§q d2
20 = In2q.2720=MBr | —_[_2(1—p)B
0 n2a dp2[ (1 —p)Br] +
d 2
In2 | —[-2(1-p)B
w2 (120 -pE) |+
d2
ln2 Qg 2_2pBT |:d—p2[—2pBT] +
d 2
In2 | —[-2pB 21
n2 (5128 @)
Using (19) and (21) we have:
d?¢, 4AB(B + C)
-5 = In2q.2720-Br |7 7 )
ap? e (Bp+C)’
2 2
1112‘414 (B+O4) ]
(Bp+C)
4ABC
In2aq 2728 | ———
ne LBp+cﬁ'*
4420
In2- ————|. 22
"2 oy 22
Now ¢, is convex if ‘f;f; is positive. From (22), it is clear

that ‘f;f; will be positive if the following condition is met;
2 2
Lo MABLCO? 4AB(B+C) 3
(Bp+C)* (Bp+C)?
This is equivalent to
B(Bp+C)
In2(B+C)’ (24)
Using (19), this becomes:
N B(Bp+C)
Pr>ug —pyc 100 (25)

Now, using (17), this condition will be satisfied if and only
if the following condition is satisfied:

B

B _ 2
T2 m2(B+0) (26)
which is equivalent to
1 24n,
Br>153 {1 T2, + 2477t] ' 27)



The term on the right hand side of (27) is clearly less than
1/1n2. This means tha% will be positive if By >
1/1n 2. This condition is clearly true under the assumption
Br > 2. Thereforeg, is a convex function op.

To solve forp**, the optimal bit allocation factor, we set
‘fl—% equal to zero. After some algebraic manipulation, this
gives the optimal allocation factor:

}
]

which gives the corresponding minimum MSE increase:

24ngaq
(72ng+24n:) e

24ngp
Pr+16n4p

(48mg+24m:)p
Pr+16nyp

log, [

sk

24ngaq
T2ng+24n; ) oce

—log, [( +47

mpinﬁq = q,2720=P")Br 4, 972" Br
whereBr is given in (17).

Observe that the optimal bit allocation factet* con-
verges to the standard allocatidf2 as the total power con-
straint Pr is relaxed to infinity. This is the regime where
the standard allocation is optimal: allocate an equal num-
ber of bits to data as to filter coefficients. As register length
decreases or convergence speed increases, the standard
location becomes suboptimal.

6. POWER VS. MEAN SQUARE ERROR

Figure 2 shows th&r-constrained optimal data bit alloca-
tion factorp** as a function ofP; superimposed on a plot
of the increase in MSE due to quantization. The power co-
efficients used arg, = 1 milliwatt andn; = 10 milliwatts.
The vector length ip = 2. Note that MSE does not degrade
significantly until Pr falls below approximately.2 Watts
(normalized). At this breakdown point the optimal data bit
allocation factor is approximately* = 0.25. We can use
relation (17) withp = p** to find the corresponding, as

a function of Pr. We find thatPr = 1.2 corresponds to
Br = 6, but the optimap** tells us to allocate only bit
plus sign to the data aridbits plus sign to the filter coeffi-

cients. This reduction is because the coefficient operations[4]

a. dominate the data factary in the relation (13).

7. CONCLUSION

We have derived expressions for the optimal bit allocation
for adaptive LMS algorithms under a total power constraint.

Power vs. MSE
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Figure 2:Optimal data bit allocation factor undeP; con-
straint and total MSE as function &r.

coefficients than to the data. In particular, we have found
that for an LMS algorithm implemented with fixed point
arithmetic and using table-lookup multiplication, it is pos-
g[ble to reduce the total number of bits to 2 data bits and 6
coefficient bits without significant increase in steady-state
MSE.
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This expression can easily be specialized to a specific hard-

ware implementation for computation of the number of bits
to allocate to data and filter coefficients. A general con-
clusion is that the standard design strategy of allocating an
equal number of bits to the data and filter coefficients is op-
timal only as the power gets very large. For typical LMS
implementations, it is optimal to allocate more bits to the



