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ABSTRACT

In order to develop improved remediation techniques for hearing
impairment, auditory researchers must gain a greater understand-
ing of the relation between the psychophysics of hearing and the
underlying physiology. One approach to studying the auditory sys-
tem has been to design computational auditory models that predict
neurophysiological data such as neural firing rates (Pattersonet al.,
1995; Carney, 1993). To link these physiologically-based mod-
els to psychophysics, theoretical bounds on detection performance
have been derived using signal detection theory to analyze the sim-
ulated data for various psychophysical tasks (Siebert, 1968).

Previous efforts, including our own recent work using the Au-
ditory Image Model, have demonstrated the validity of this type of
analysis; however, theoretical predictions often exceed experimen-
tally-measured performance (Gresham and Collins, 1998; Siebert,
1970). In this paper, we compare predictions of detection perfor-
mance across several computational auditory models. We recon-
cile some of the previously observed discrepancies by incorporat-
ing phase uncertainty into the optimal detector.

1. INTRODUCTION

One goal of auditory research is to design improved remediation
devices that are capable of restoring impaired hearing to “normal.”
By establishing a link between the physiology of normal and im-
paired auditory systems and perception, we can determine what
information each system uses to detect and classify sounds. With
this knowledge, new devices can be designed to enhance the signal
prior to delivering it to the damaged system, thus compensating for
impairments.

Signal detection theory has been used to study the auditory
system by calculating the detection performance achieved by “ideal
observers” on various psychophysical tasks [3]. Often, the theo-
retic principles were applied directly to the stimuli, ignoring any
transformations that occur as the signal passes through the auditory
system. Realizing that some processing does occur in the periph-
eral auditory system, researchers began applying signal detection
theory to the output of simplified auditory models (e.g., an energy-
detector) [7], [8]. However, these functional models mimicked
little of the physiological detail of the auditory system. Subse-
quently, basic physiologically-based computational models were
developed to simulate neurophysiological data such as neural fir-
ing rates. To link physiological data to psychophysical behavior,
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signal detection theory was applied to these physiologically-based
models to obtain predictions of detection performance on several
psychophysical tasks [9], [10].

Modern computational models, such as the Auditory Image
Model [6], represent the physiology of the auditory system more
accurately than their basic forerunners. Our recent work has demon-
strated that analyzing such models using signal detection theory al-
lows us not only to predict detection performance for any generic
input signal, but also to study what information is lost and where
this loss occurs as the signals propagate through the auditory sys-
tem, an important factor when studying impairments [4]. How-
ever, like methods used in the past, theoretical predictions exceed
experimental performance on the detection of a 500 Hz tone in
broadband, Gaussian noise. Here, we first investigate this discrep-
ancy by comparing predictions from both functional and physio-
logical models under signal-known-exactly conditions. Secondly,
thea priori assumptions are modified such that the input phase is
uncertain and the results are again compared across models.

In the following sections, the models we used are described in
detail. We then discuss the procedure used to derive the “optimal”
detector and explain how the performance of each model was eval-
uated. Finally, the results are presented and some conclusions are
drawn regarding where the discrepancy between theoretical pre-
dictions and experimental performance might originate.

2. COMPUTATIONAL AUDITORY MODELS

Typically, computational auditory models process auditory stimuli
in multiple “stages” designed to simulate two components of pe-
ripheral auditory processing: spectral analysis and neural encod-
ing. Both the Auditory Image Model (AIM) [6] and the Carney
model [1] were designed in this way, however, they differ in their
implementation. Broadly, the models can be classified as either
functional, simulating hypothesized signal processing, or physio-
logical, simulating actual structures such as inner hair cells. AIM
contains both a functional and a physiological module whereas the
Carney model only has the latter. AIM also provides an additional
stage of processing that converts the neural firing rate into an “au-
ditory image.” The following sections describe the specific imple-
mentation each model uses to simulate auditory processing.

2.1. Auditory Image Model

2.1.1. Functional Module

The functional modules of AIM (AIM-F) are based solely on the
hypothesized signal processing performed by the auditory system



rather than specific physiological mechanisms. The first stage of
processing, spectral analysis, is performed by a linear gamma-
tone filterbank. The filters are level-independent and have a time-
invariant, frequency-dependent bandwidth. Each channel, corre-
sponding to a filter with a particular center frequency, is processed
independently. Therefore, non-linearities such as distortion prod-
ucts are not present in the output signal. Filtering also creates a
general rightward skew in the output from high to low-frequency
channels corresponding to propagation delay in the cochlea.

Neural encoding is simulated by rectifying, compressing, and
applying two-dimensional adaptation to the outputs of the filter-
bank. Frequency adaptation, which is performed across channels,
sharpens features such as formant frequencies, whereas temporal
adaptation sharpens features within a single channel. The phase
differences introduced in the previous stage are maintained.

Finally, “strobed” temporal integration is applied to the neural
activity pattern. Once again, the output of each channel is pro-
cessed independently with integration in a particular channel be-
ing triggered by a peak in the activity pattern of that channel. This
results in phase alignment across each of the channels. The ulti-
mate output of AIM is an “image” that, in the case of a periodic
stimulus, is static.

2.1.2. Physiological Module

The physiological modules of AIM (AIM-P), as well as the Carney
model (described below), are designed to simulate actual phys-
iological structures and mechanisms of the auditory system, not
simply the signal processing. As such, spectral processing is per-
formed using transmission line filtering designed to approximate
cochlear hydrodynamics. Level-dependence is incorporated using
a feedback circuit that simulates outer haircell responses. In ad-
dition, channel interactions produce non-linearities such as distor-
tion products and two-tone suppression. A phase lag, similar to
that observed in the functional case, is also present.

The neural firing pattern is generated by simulating one inner
haircell per channel using the Meddis haircell model [5]. All hair-
cells were assumed to be synapsed with medium spontaneous rate
fibers. In contrast to the functional version, there is no frequency
sharpening due to cross-channel coupling. In addition, the com-
pression that occurs at this stage of the functional model is instead
performed as part of the transmission line filtering.

In the final stage of the physiological model, the neural activ-
ity pattern is processed by a bank of autocorrelators. The resulting
“image” is known as a correlogram. Since each channel is pro-
cessed independently, there are no cross-frequency effects. As in
the functional model, the phase lag also disappears.

2.2. Carney Model

Like the physiological modules of AIM, the Carney model at-
tempts to simulate physiological mechanisms in the auditory sys-
tem to produce accurate representations of neural data. Parameters
of the model were chosen so that accurate responses (PST his-
tograms, rate-level functions, tuning curves) to simple and com-
plex stimuli were obtained.

The Carney model, like the functional version of AIM, first
performs spectral analysis using a linear gammatone filterbank.
However, in contrast to AIM-F, Carney introduces a compressive
nonlinearity through a feedback loop designed to simulate outer
haircell response. The effect of the feedback is to create time-
varying filters whose responses are level-dependent. However,

unlike the physiological version of AIM, no channel interactions
are modeled. Thus, nonlinearities such as distortion products and
two-tone suppression cannot be represented. The latency of the
response of auditory nerve fibers, which results in phase lags, is
simulated by introducing a frequency-dependent time delay to the
waveforms at the output of the filterbank.

The delayed output of the filterbank is then passed through an
inner haircell simulator modeled as a saturating non-linear func-
tion followed by two low-pass filters. In contrast to AIM-P which
simulates medium spontaneous rate fibers, this model simulates
the responses of only high spontaneous rate fibers. In addition,
nonlinear adaptation effects are incorporated into the model. At
this point, the signal is comparable to the neural activity pattern
produced by AIM. However, from this stage on, the processing
performed by the two models differs substantially. Rather than
perform temporal integration, as AIM does, the Carney model ap-
plies the neural activity pattern to a Poisson spike generator. In
this way, some uncertainty or “internal noise” is added to the out-
put data.

3. DERIVING THE OPTIMAL DETECTOR

One of the advantages of using computational auditory models is
that optimal detectors can be derived from simulated physiologi-
cal responses to various stimuli. The auditory stimuli used in our
simultaneous masking task were a tone at 500 Hz and broadband,
Gaussian noise. Under the null hypothesis (H0), the noise alone
was used as the input to the model; underH1, the tone and noise
were added together withE=N0 = 14. Multiple independent real-
izations of the noise and tone plus noise were propagated through
each model. The result was an ensemble of output waveforms rep-
resenting the model’s responses to the two different inputs. From
these ensembles, histograms were generated from the output re-
sponses at theith point in time across all waveforms. This proce-
dure yielded estimates of the true density functions,p(rijH0) and
p(rijH1).

Despite some temporal correlation evident in the data, the den-
sity functions were assumed to be independent across time to sim-
plify computations. Thus, the likelihood ratio,�, which is defined
as the ratio of the density functions under each hypothesis, can be
expressed as:

� =
p(rjH1)

p(rjH0)
=
Y
i

p(rijH1)

p(rijH0)
; (1)

where i is a temporal index into the vector of received data,r.
The optimal detector is simply a monotonic function of this likeli-
hood ratio. Thus, by using the output data from the computational
models to derive the optimal detector, it is possible to incorpo-
rate processing performed by the auditory system into this analy-
sis, thereby providing an advantage over traditional methods which
analyze only the input signals.

The previous equation was derived under the assumption that
all parameters of the input signal are known exactly. However,
this is not necessarily a reasonable assumption since the auditory
system does not knowa priori which signals will impinge upon it.
It is more likely that some uncertainty regarding the signal exists
in the auditory system. This uncertainty can be incorporated into
the optimal processor by integrating over the uncertain parameters.

� =
p(rjH1)

p(rjH0)
=

R
 
p(rjH1;  )p( jH1)d 

p(rjH0)
; (2)



where is the set of all uncertain parameters andp( jH1) de-
scribes thea priori knowledge the system has about the distribu-
tion of the input parameters. For the case presented in this paper, 
was the phase of the tone,�, which was assumed to be uniformly
distributed on the interval [0:2�]. This parameter was chosen be-
cause it is reasonable to assume that the auditory system has noa
priori knowledge of the phase of the signal impinging on the ear.
Assuming temporal independence, Equation 2 can be rewritten as,

� =
p(rjH1)

p(rjH0)
=

1

2�

Z
�

Y
i

p(rijH1; �)

p(rijH0)
d�: (3)

The conditional density functions,p(rijH1; �), are estimated as
before using input tones with all possible values of� rather than a
single, known value.

4. ANALYSIS PROCEDURE

In order to evaluate the detection performance of various auditory
models, the Receiver Operating Characteristic (ROC) curves for
each model are determined. Such curves are derived by comparing
the likelihood ratio to a threshold,�. The probability of correctly
detecting the tone when it is present,Pd, and the probability of
giving a false alarm when the stimulus is noise alone,Pf , can be
uniquely determined for each threshold value. Each pair of proba-
bilities constitutes a single point on the ROC curve. The value of
the threshold can be systematically varied so that a complete ROC
curve is generated.

Many complete curves are generated for each model and av-
eraged together resulting in a single performance curve. These
curves, depicting the theoretical detection performance associated
with each model, can then be compared visually, by plotting them
on normal-normal plots, and statistically, by deriving the detectabil-
ity index, ds, from the raw data and determining the slope of the
ROC curve, equal to the ratio of standard deviations,�n=�sn [2].

The differences between the models were investigated by study-
ing the performance of each on a simple psychophysical task – the
detection of a 500 Hz tone in broadband, white Gaussian noise.
In order to compare AIM and the Carney model, the spontaneous
rate of the fibers in the Carney model was set to zero since AIM
does not include this parameter. In addition, the version of the
Carney model used in our analyses did not include the Poisson dis-
charge generator. Finally, the ROC curves presented in this paper
only provide a comparison between the performance of the Car-
ney model (which ends with the production of a neural firing rate)
and the performance obtained at the comparable stage of AIM. A
complete quantitative comparison is included in tabular form.

5. RESULTS

A prediction of detection performance was generated for each model
under the assumption that all parameters of the input signal, in-
cluding the phase, were knowna priori. Figure 1 depicts the ROC
curves generated by applying the optimal detector to the average
neural firing data of each model as well as the ROC depicting the
performance obtained when the “optimal” processor operates on
the original input signal. Since, in the latter case, the signal has
not been degraded by being processed by a model, it contains all of
the original information. Therefore, the corresponding ROC curve
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Figure 1: ROCs for the known phase case: (�), Classical SDT
(SKE); (+), Carney model; (�), AIM-Physiological; (�), AIM-
Functional; (- -), Experimental (adapted from Watsonet al. [11]).

represents the best performance achievable for the given task. Al-
though this measure is not a realistic predictor of actual auditory
performance, it is useful as a reference.

All of the models predict performance worse than the “op-
timal” case, with the functional model showing the greatest de-
crease. Table 1 quantifies the ROC curves in terms of a detectabil-
ity index, ds, and a slope,�n=�sn. The decrease in performance
suggests that information is being lost as the signal propagates
through each model. Discrepancies between the models can be
attributed to the fact that different implementations of auditory
processing result in different amounts of information being lost.
Finally, all predictions can be compared to actual human perfor-
mance. The dashed line represents the ROC derived from exper-
imental data obtained by Watson and his colleagues [11] for the
same detection task.

The performance curves in Figure 2 were obtained when the
phase of the input signal was assumeda priori to be uniformly
distributed. The optimal processor for each model was derived by
integrating over the phase as shown previously in Equation 2. As
in the first figure, the experimental and the classical signal-known-
statistically (SKS) case ROCs are included for reference.

Comparing the classical SDT ROC curves for both the known
and unknown phase cases reveals that phase uncertainty in itself
causes a decrease in performance. It follows that, even if no in-
formation were lost as the signal propagated through the auditory
system, one would expect to observe at least the same drop in de-
tectability between the known and uncertain cases when processed
by any auditory model. Examination of the model-predicted ROC
curves reveals that the detection performance has indeed decreased
for all models as a result of the added phase uncertainty.

According to Table 1, the expected change in detectability is
ds;SKE � ds;SKS = 0.6. Performing similar calculations for the
Carney, AIM-P, and AIM-F models, values of 0.9, 0.7, and 0.6 are
obtained, respectively. We can conclude, therefore, that the change
observed for the functional model (AIM-F) can be explained by
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Figure 2: ROCs for the uncertain phase case: (�), Classical SDT
(SKS); (+), Carney model; (�), AIM-Physiological; (�), AIM-
Functional; (- -), Experimental (adapted from Watsonet al. [11]).

the addition of phase uncertainty alone. The two physiological
models, however, show a greater decrease inds suggesting that
there has been additional information lost.

Table 1 also provides data quantifying the detection perfor-
mance of the energy-detector model and the performance achieved
by AIM at its final output, the auditory image. The results show
that the detectability index of the energy-detector model is greater
than indices obtained using either AIM or the Carney model under
the unknown phase assumption. However, the slope is less than
that of the models and the experimental value. Performance mea-
surements for the auditory image stage of AIM indicate that there
is a slight decrease in bothds and the slope for both versions.
However, for any single module, there is essentially no difference
between the known and unknown phase cases.

6. SUMMARY

The data show that, for a simultaneous masking task, both the
Carney model and AIM yield similar predictions of detectability
at the neural firing stage when the samea priori assumptions are
made. This suggests that both models are equally good at predict-
ing detection performance for a simple task which requires only
a single channel analysis. However, more complex tasks, such
as frequency discrimination, create channel interactions, a feature
not included in the Carney model. Differences in implementation,
therefore, may determine which model should be used.

As the results show, phase information aids in the detection of
the signal at the level of the neural firing. However, since this in-
formation is removed by temporal integration, uncertainty in this
parameter does not affect detection performance at the level of the
auditory image. In order to explain the remaining discrepancy be-
tween theoretical predictions and experimental data, future work
will use the average firing rate as the input to a Poisson discharge
generator, thereby adding physiologically-based “internal noise”
to the system which will decrease detection performance.

Location Model Assumptions ds �n=�sn
Outside SKE Known� 3.7 1.00
the ear SKS Unknown� 3.1 0.82

ED Unknown� 2.8 0.76
Neural Carney Known� 3.4 1.13
Firing AIM-P Known� 3.2 0.98

AIM-F Known � 3.0 1.17
Carney Unknown� 2.5 0.95
AIM-P Unknown� 2.5 0.90
AIM-F Unknown � 2.4 1.00

Auditory AIM-P Known� 2.4 0.75
Image AIM-P Unknown� 2.4 0.76

AIM-F Known � 2.2 0.92
AIM-F Unknown � 2.2 1.04

Experimental 1.1 0.82

Table 1: Summary of ROC curves.
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