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ABSTRACT

In the unlabeled data problem, data contains signals from various
sources whose identities are not knownapriori, yet the parame-
ters of the individual sources must be estimated. To do this op-
timally, it is necessary to optimize the data PDF, which may be
modeled as a mixture density, jointly over the parameters of all the
signal models. This can present a problem of enormous complex-
ity if the number of signal classes is large. This paper describes
a algorithm for jointly estimating the parameters of the various
signal types, each with different parameterizations and associated
sufficient statistics. In doing so, it maximizes the likelihood func-
tion of all the parameters jointly, but does so without incurring the
full dimensionality of the problem. It allows lower-dimensional
sufficient statistics to be utilized for each signal model, yet still
achieves joint optimality. It uses an extension of the class-specific
decomposition of the Bayes minimum error probability classifier.

1. INTRODUCTION

In many real-world problems, there are a variety of co-existing sig-
nal types imbedded in noise and the exact nature or classification
of signals as they arrive at the sensor are unknown. This is some-
times known as theunlabeled dataproblem. However, it is of-
ten necessary to obtain statistical characterizations, or probability
density functions (PDF’s), of the individual signal types. We can
envision two general types of problems where this is necessary. In
the first type of problem (Type I), the varous signal types are con-
sidered to be abackgroundthat is distinguished from somedesired
signal type. In active sonar, for example, there are a large variety
of reflecting boundaries in the ocean that must be distinguished
from the reflection from a ship or submarine. In such problems,
the sub-classification of the exact background signal type is not
important but the PDF of the background is necessary in order to
obtain optimal classification performance against the desired sig-
nal. In the second type of problem (Type II), the PDF’s of the
individual sub-classes of backgroundare important, but it is not
practical to manually classify the data for the purposes of estimat-
ing the individual PDF’s, i.e. the training data isunlabeled.

We present below an algorithm that solves the global problem
of estimating the parameters of the PDF’s of the individual models
from the unlabeled data. It does so in the global maximum likeli-
hood sense, but without the high-dimensional search. SupposeK
samples of signal-plus-noise are observed from the mixture PDF
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The joint maximum likelihood estimate is the� which maximizes

max
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p(Xk;�); (2)

There are two aspects of this problem that threaten to make it im-
possible to solve in practice. First, the varous terms in the mixture
PDF interact, so it involves a search for a single maximum point
in the high-dimensional space�. This is in contrast to the labeled
data problem which consists a set of simpler problems

max
�m2�m

KY
k=1

p(Xm
k ;�m); (3)

for eachm, whereXm
k are data samples known to be from classm.

Second, (3) may be aided by reduction ofX to a sufficient statistic
Zm = Tm(X) apropriate for each signal class. This cannot be
done in (2) unless the sufficient statistics are the same for allm.
Now, we solve both of these problems.

2. ASSUMPTIONS AND MATHEMATICAL RESULTS

The following two assumptions are needed for the main results:

Assumption 1 LetH0 be a noise-only class writtenp(XjH0;�0).
Within�m, for eachm, there exists the same “noise-only” condi-
tion �0m, i.e.,

lim
�m!�0m

p(XjHm;�m) = p(XjH0;�0)

Assumption 2 Suppose for each Class PDF,p(XjHm), there ex-
ists a sufficient statistic for the parameter�m 2 �m. Denote this

sufficient statistic byZm
�

= Tm(X).

Applying the above two assumptions, we have

p(XjHm;�m)

p(XjH0;�0)
=
p(ZmjHm; �m)

p(ZmjH0; �0)

by sufficiency. Therefore,

p(X;�)
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Define the likelihood function to be

L(X;�) =
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whereZm;k
�

= Tm(Xk), � =
�
p(Hm); f�mg

M
m=1

	
, and�0 is

presumed to be known.
The objective is to estimate� using the E.M. algorithm. It is

shown in another section that the E-step consists of maximizing

Q(�;�0) =
PK
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PM
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[log p(Hm)

+ log p(Zm;kjHm;�m)�
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over�, where


km (Zm;k; �) =
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From hereafter, we drom the notational dependence onZm;k; �,
simplifying the notation to
km. The M-step produces estimates
of p(Hm):

p(Hm) =
1

K

KX
k=1


km (8)

2.1. Discussion

Notice that in (6), the maximization ofQ(�;�0) with respect to�
requires the functions

Qm(�m; �0) =

KX
k=1

log p(Zm;kjHm; �m) 
km (9)

to be independentlymaximized over�m, for eachm. This is in
contrast to (5), which contains mixed terms and requires joint max-
imization. Equation (9) is, in effect, is a probabilistic weighting of
each data sample, a minor modification of individual maximum
likelihood estimators represented by (3). If an existing algorithm
exists for maximization of

PK

k=1
log p(Zm;kjHm;�m), then this

algorithm may be used with a minor modification. One way to do
it, albeit impractical, would be to scale
km by a large constant
C, round to an integernkm = bC 
kmc, then form a larger data
set composed of a replication of each data sampleZm;k by the
corresponding integer:

Z
0 �

= ffZm;1 � � �Zm;1g; : : : ; fZm;K � � �Zm;Kgg ;

then maximize
K0X
k=1

log p(Z0kjHm;�m)

whereK0 =
PK

k=1
nkm. A more practical, yet suboptimal method

would be to threshold
km and include only those data samples in

X that exceed the threshold. Of course, the best approach would
be to integrate the weighting directly in the algorithm. If an EM-
algorithm is used within the ML estimator for�m, it is straight-
forward. Below, we give an example in whichp(Zm;kjHm; �m)
are Gaussian mixtures. The result is an EM algorithm operating
simultaneously onM different feature spaces.

3. AN EM ALGORITHM FOR A NON-HOMOGENIOUS
GAUSSIAN MIXTURE

We now show how to integrate the data weighting
km into the up-
date equations for the EM algorithm for the individual class PDF’s
using an example wherep(ZmjHm) are Gaussian Mixtures. Con-
sider a Gaussian muxture forZm 2 RNm under classm

p(ZmjHm) =

LmX
i=1

�mi Nmi(Zm) (10)
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�1=2 exp
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By substituting (10) into (4), we have an expression forp(Xj�)
that is a kind of mixture of mixtures, with each sub-mixture a func-
tion of a different sufficient statistic. We call this anon-homogeneous
Gaussian mixture. The update procedure for the parameters

� = fp(Hm); �mi; �mi; �mig

are provided in Table 3.
It may be noted that the above update equations are identical

to the usual Gaussian Mixture EM updates except for the inclusion
of 
km in the first step. Notice also that because of the waywi;k
are normalized, the data weights
km may be arbitrarliy scaled
without changing the algorithm.

Because of possible numerical issues, it may be necessary to
add a constant to the diagonal elements of�mi at each iteration.
These constants may be regarded as prior knowledge in the form of
independent measurement error variancess, and should be chosen
carefully. This method has been employed with much success.

4. SIMULATION RESULTS (7-CLASS EXAMPLE)

The example problem to be discussed here is a subset of the 9-class
synthetic problem discused in a previous paper [1]. We consider
the following 7 data classes denotedH1; : : : ; H7.

� ClassH0: Noise only

� ClassH1: Long Sinewave

� ClassH2: Medium Sinewave

� ClassH3: Short Sinewave

� ClassH4: Long Gaussian Signal

� ClassH5: Short Gaussian Signal

� ClassH6: Short Impulse Signal

� ClassH7: Long Impulse Signal

The sufficient statistics are tabulated in Table 2 and their dis-
tributions underH0 are listed in Table 3.

Futher details of the signal types and their distributions under
H0 may be found elsewhere [2].



� Repeat form = 1; : : : ;M :

1. Compute data weights

wi;k =
�mi Nmi(Zm;k) 
km
LmX
i=1

�mi Nmi(Zm;k)

;

for i = 1; : : : ; Lm.

2. Let

ai =

KX
k=1

wi;k;

for i = 1; : : : ; Lm.

3. Update the means

�mi =
1

ai

KX
k=1

wi;k Zm;k;

for i = 1; : : : ; Lm.

4. Update the covariances

�mi =
1

ai

KX
k=1

wi;k (Zm;k��mi) (Zm;k��mi)
0
;

for i = 1; : : : ; Lm.

5. Update mode weights

�mi =
aiPK

k=1

km

for i = 1; : : : ; Lm.

End

� Use (7) to update
km for all k;m.

� Use (8) to updateP (Hm) for all m.

Table 1: Update Equations for Non-Homogeneous Mixture

4.1. Data Set

To simulate a data set from a mixture of the seven data classes,
an equal share of 1024 samples from each data class were created.
Each input data sample was a time-series of 256 data points. The
samples were then joined together into a single data set. The true
class index of each sample was not used by the algorithm, but was
remembered for use later in validation. For each input data sample,
the sufficient statistics were computed for all class indexes.

4.2. Algorithm Initialization

Initial values of�mi were set equal to randomly chosen input data
samples. Initial values of�mi were set equal to the sample co-
variance of the entire data set. Initial values of�mi were all equal,
as were the initial values ofP (Hm). The number of Gaussian
mixture components per data class was 10.

Z1 =
�PN

i=1
xi cos(!i)

�2
+
�PN

i=1
xi sin(!i)

�2

Z2 =
hPN=2

i=1
xi cos(!i)

i2
+
hPN=2

i=1
xi sin(!i)

i2

Z3 =
hPN=4

i=1
xi cos(!i)

i2
+
hPN=4

i=1
xi sin(!i)

i2

Z4 =
PN

i=1
x2i

Z5 =
PN=2

i=1
x2i

Z6 = log(x21)

Z7 = log(x21 + x22)

Table 2: Class-Specific Statistics

4.3. Algorithm Performance

Algorithm performance may be measured by monitoring the likeli-
hood function (5). Notice also that
km in (9) acts as a probablistic
data weighting for each sample. It is in effect an estimate of the
probability that data samplek is from classm. If the algorithm
is working properly andp(ZmjHm) are converging to the true
PDF’s,
km should act as data classifiers. Thus, for a given sample
k, maximizing overmwill produce a guess as to the class index of
the sample. But this will not work in general. Specifically, if two
data classes have the same or equivalent sufficient statistics, the
algorithm has no way to make the separation between the classes
except perhaps as different Gaussian Mixture components within a
fixedm. This shortcoming of the algorithm is expected since it is
designed only to estimate the PDF of the overall non-homogenious
mixture (Type I problems). The separation of the sub-classes is ir-
relevant to its operation. However, if all the sufficient statistics are
different, it has a chance of accomplishing this goal (Type II prob-
lems). In this example, we monitor the algorithm performance as a
Type II problem by determining the probability of correct classifi-
cation (Pcc). Pcc was determined by determining what percentage
of the data was classifed correctly (i.e. whenargmaxm 
km was
equal to the true class index).

The algorithm was allowed to iterate 380 times. At each it-
eration, the total likelihood as well as the probability of correct
classification (Pcc) were determined. These quantities are plotted
in Figure 1. Notice that the likelihood was monotonic increasing
as expected.

The algorithm was re-run using labeled data, i.e. only data
from classm was used to trainp(ZmjHm). The result is plotted
in Figure 2. As would be expected,Pcc is higher, but the likelihood
is lower (not discernable on the graph). Using labeled data does
not nececarily maximize (5).
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Table 3: Distributions of Class-Specific Statistics

The PDF estimate ofp(Z4jH4) from unlabeled data is plotted
in Figure 3. Superimposed on the graph are the histograms ofZ4

for all data classes and for just class 4. The fact that the PDF
estimate matches the histogram for class 4 illustrates the fact that
PDF estimates may be obtained from unlabeled data.

5. CONCLUSIONS

An E-M algorithm has been derived for the case when the input
data is a mixture density of several data classes, with each data
class dependent on a different set of parameters, By taking ad-
vantage of different sufficient statistics for each data class, it is
possible to jointly estimate the parameters efficiently.
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Figure 1: Algorithm Convergence Properties. Scaled log likeli-
hood values superimposed on a plot ofPcc.
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Figure 2: Repeat of Figure 1 with labeled data used to train
p(ZmjHm).
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Figure 3: PDF estimation results for featureZ4 using unlabeled
data. Graph includes histogram of data from all 7 classes (dot-
ted), histogram of data from class 4 (circles), PDF estimate for
p(Z4jH4) (solid). Data is plotted on a normalized axis. The des-
ignation “SUX1” is the name used to identify featureZ4.


