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ABSTRACT vector notation,

Interior Point Optimization techniques have recently emerged 7, (w) = y? Ay, — 2w_ puy(n) + w. Rz (n)wy
as a new tool for developing parameter estimation algo-

rithms [1, 2]. These algorithms aim to take advantage of where

the fast convergence properties of interior point methods, to Yo = WYz sunl’,

yield, in particular, fast transient performance. In this pa- . N

per we develop a simplanalytic centerbased algorithm, A= diag( AT VAL,
which updates estimates with a constant number of com- poy(n) = ZAnfiXiyi
putation (independent of number of samples). The conver- Y = ’
gence analysis shows that the asymptotic performance of n

this algorithm matches that of the well-known least squares Rez(n) = Z A ixx T
filter (provided some mild conditions are satisfied). Some i=1

numerical simulations are provided to demonstrate the fast

transient performance of the interior point algorithm. R (n) andp., (n) are the input signal auto-correlation

matrix and the cross-correlation vector of desired and input
signal, respectively (both are exponentially weighted). The
1. INTRODUCTION least-squares solution is obtained by soVing,,(w) = 0,
which yields
Consider the following system: Wis(n) = R (n)Pay (). (1.1)
wr.s(n) sometimes suffers from poor transient performance
wherey; € R is the outputx; € RM is the input vector,  duetoill-conditioning oR.(n) (caused, for example, from
w. € RM is the unknown parameter vector ande R a lack of observation data).
is additive measurement noise. The parameter estimation |n Section 2 we develop an adaptive estimation algo-
problem is to identify the parameter vecter, from in-  rithm using concepts from interior point optimization. In
put/output pairs{x;,y;}. The same task is also referred contrast to other algorithms based on similar ideas [2] our
to as adaptive system identification and has applications inalgorithm has a computational complexity that does not in-
adaptive filtering [3]. crease with the number of samples. In Section 3 we show
The error measure used most commonly to evaluate thethat the asymptotic performance of our algorithm matches
performance of a particular parameter estinvaie the mean- that of the least-squares estimator. Finally, we include some
squared error: numerical simulations to demonstrate the potential of our al-
gorithm, especially with regard to its transient performance.

yi:xZTW*—{—vi 1=1,2,...

Fulw) =Y A" y; — x7 w]?
i=1 2. ALGORITHM IPM
where is the forgetting factor typically included to allow
the estimation algorithm to adapt to slow changes in the pa-In the optimization theory literature interior point algorithms
rameter vectow. It will be helpful to rewrite F,,(w) in are often applied to the convex feasibility problem: to find



a feasible poiny in a convex sef’ starting from an initial Step 1: Initialization. Let 3 > 0, R > 0 be given. Set
bounded search regiday, O T'. At each iteration the fol-
lowing steps are performed wo =0, Ppgy(0)=0
R..(0)=0, VFy(0)=0

1. Check feasibility of current estimagg _; .

2. Ifinfeasible, add a new convex cut to obt&ip (note  Step 2: Updating. Acquire new data,,, y,. Then recur-

that we maintail C Q,, C Q,,_1). sively update
3. Updatey,, ; to the new “center%,, of Q2,,. Pay(n) = APgy(n—1) + xpyn,
R..(n) = ARgz(n—1)+x,x..

Since the sequence of s€ts are constantly shrinking, even-

tually the centey,, will satisfy y,, € I'. We shall give de-  Then

tails on how to modify the feasibility sét,, and on how to

determine its “center” as we apply the interior point algo- ~ ® UpdateVF, (w,—1) = —2pza(n) + 2Rz (n) w1
rithm to the parameter estimation problem.

To apply the generic interior point method described
above to our parameter estimation problem, we first refor, — max{l, \/Vfg(wn1)(v2¢n1(wn1)1an(wn1)}
mulate the problem in the context of convex feasibility. At n
each iteratiom we look for a filterw,, at the center of

o let

A A sin) = 1 — Fn(Wn_1)
O, ={weRM | F.(w) <72, ||w|]* < R?}. Y

Note thatr,, is typically selected in such a way that our ini-
tial pointw,, 1 remains in the interior of the search region.
But sincew,,_; might still be close to the boundary we try
to re-center deeper into the interior @f,. To update to @  step 3: Centering. Forn > 0, perform Newton iterations
new estimatev,, we define théogarithmic barrier function
of Q,, as

o Vo(wn_1), Vi¢n(w,_1) using Egs. (2.2), (2.3)

starting fromw,, 1:

wi=w — (VZ¢, (W) 1V, (w 2.4
Pn(w) = —log(r;; — Fn(w)) —log(R* — [[wl]*). (Vo) N ontw) @4
until ¢,, is (approximately) minimized. m|
The functiong,,(w) is convex and approaches infinity on
the boundary of2,,. The (unique) global minimizer af,, (w)
is called theanalytic centenf 2,,. The gradient and Hes-
sian of¢g,, (w) are given by

Some remarks are in order. The choice of constant pa-
rameters3 and R will be discussed more in Section 3. In
Step 2 the update of the slack variable implies the following

update of the threshotd,,
Von(w) = “In 2% 2.2) o = Fu(Wn1) + B
S1 52
Vipn(w) = (an)QTan n V2 F, 2.3) We have chosen to updatg(n) directly, to save our-
81 S1 selves the computation of,(w,_1). If more than one
awTw 21 Newton iterations are needed in Step 3, we have to re-evaluate
52 5o Vo (w), V3¢, (w) at the new iterate. While we can show
theoretically, that a constant number of Newton iterations
wheres; ands» are slack variables defined by := 72 — are sufficient to find an approximate analytic centef,gfin
Fn(w), ands, := R? — ||w]|?>. The gradient and Hessian practice taking just one Newton iteration ensures adequate
of F,,(w) are given by convergence. This results in substantial computational sav-
ings since the inversion of the Hessian in (2.4) is computa-
VF. = —2pzi(n) + 2Ry (n)w, tionally the most expensive step in the algorithm. Sifige
V2F, = 2R..(n). VF, andV2F, can all be calculated recursively, the over-

all complexity per iteration of Algorithm IPM1 i€ (M?),
We summarize the steps of Algorithm IPM1 as follows: independent of..



3. CONVERGENCE ANALYSIS Theorem 1 Suppose Condition 1 is satisfied and the mea-
surement noise is i.i.d., then
We now analyze the asymptotic convergence of the IPM1 1
algorithm (its steady state behaviour). Two conditions will E(w. —w,|*) =0 <—> ,
be required in the analysis. "
wherew, is the true weight vector.
Condition 1 Weak Persistent Excitation.

There exisig > 0,0 > 0 such that for alln > ng ' Theorem 1 states that the analytic cgmelr\{vill mini—
mize the mean-squared error cost function. Since it does so

1™ - at the same rate as the least-squares estirtatgfn) we
o Z xix; > oL can say that their asymptotic performance is equivalent.
i=1
Condition 1 will be used in the proof of Lemma 3 to 4. SIMULATIONS

upper bound the Hessian inver8& ¢, (w,_1)]~". Below

we outline the overall analysis by providing several lemmas In this section we present results from two different simu-

that are required for the final convergence theorem. Due tolation experiments in which we compare the estimation ac-

the limited space, proofs will not be included in this short curacy of Algorithm IPM to that of a typical least-squares

paper. algorithm, RLS. First, the potential difference in transient
performance of the algorithms is demonstrated, and in a sec-

Lemma 1 Assume the least-squares solution exists and isONnd experimentwe raise some new issues by considering an

bounded||ws(n)|| < t. LetR > t, then abruptly changing channel.
For the first experiment, the input vector sequence is
Wy = arg v?éléln bn(w), generated from a white Gaussian process, the noise sequence
is also white Gaussian at a SNR3#fdB, and the unknown
the analytic center of?,, is also bounded, and parameter vector is given by

w, = [0.1 —0.21 0.35 0.4 —0.6 0.3

Wl < [[Wrs(n)|| <t
0.8 —=0.95 0.5 —0.7]".

Lemma 2 In algorithm IPM, w,,_, remains feasible with  Figure 1 shows the error in the parameter vector
respect to the updated feasible §gt.
N 2
W — w.||

Lemma 1 is intuitively satisfied since in the Interior Point for RLS and IPM, averaged over 100 independent Monte
method we minimize both the mean-squared error as well a%carlo trials. It is verified that after an initial transient phase

thg nhorm of the parameter estimate The proof of Lemma both RLS and IPM show the same asymptotic behaviour.
2 is straight forward. One only needs to show that the slacksUntiI approximately iteration 20, however, IPM has a lower

$1, 52 femain positive atv,, ;. estimation error. The norm constraint §fy, does not al-

low the parameter estimate to fluctuate wildly with incom-

Lemma 3 Suppose Condition 1 holds and the noisés  ing data. Parameter settings for the two algorithms are as

IId, then follows:
_ 1
(Von(Wn 1), [Vhn(Wn 1) 'V (w, 1)) IPM: B =2 R=100,wo=0,\=0.99
RLS:  R,.(0) = 10751, wo = 0, = 0.99

< 1 V2Rt _ The transient convergence of a parameter estimation al-

B Rt gorithm becomes even more significant when the parameter

o o _ vector to be identified changes in time. In our second exper-

Lemma 3 is important because it implies that_; is iment the parameter vector starts off at the same values as

an approximate analytic center@f,. Thus, only aconstant  pefore and at iteration 100 it changes to
number of Newton iterations are required in the re-centering

step of IPM 1. Lemma 3 is also instrumental in the proof of w, = [0.02 —0.04 0.07 0.08 —0.12 0.06
Theorem 1. 0.16 —0.19 0.1 —0.14]".



It is well know that the “plain” RLS algorithm performs YT e
poorly after an abrupt change, because at the time of the '

change the state &' corresponds to a poor initialization
[4]. The problem is addressed by using a “sliding-window” S
approach in which all data outside the current window is
erased from memorye(g.,[5]). Itis interesting to note that
implementing a sliding-window version of IPM is straight-
forward. We simply compute the cross-correlation vector
and auto-correlation matrix over a limited time window. For
the second experiment SNR is increase®ddB and the Wl
length of the sliding window is 20. Otherwise all param-
eters remain the same. Figure 2 shows the estimation ere; 1 E el T ient perf : ¢
ror of the sliding-window versions of RLS and IPM. It can \gure - Exampie 1. Transient periormance in parameter
be observed that IPM sustains very fast convergence unt“estlmatlon

it reaches the steady-state error level. The sliding-window —
RLS on the other hand drops out of the “fast-convergence” - SRS
mode sooner and thus takes much longer to come to a steady o 1
state.

2
lIw = w,

60 70 80 % 100

5. CONCLUSIONS

We have presented a novel Interior Point Optimization ap- IR w— S
proach to parameter estimation, and shown its asymptotic
convergence to match that of the least-squares solution. Our o e wm me m me W me w0 s w

algorithm compares well to an alternative approach based

on similar ideas [2], as it does not require a bounded noiseFigure 2: Example 2: Changing Channel characteristics at
assumption, and its computational complexity does not in- Iteration 100

crease with the number of observations. The main practical

advantage of the new algorithm lies in its fast transient per-

; Simulati | h 0d ¢ te15] H. Liu and Z. He, “A sliding-exponential window RLS
ormance. simuation examples were shown to demonstra adaptive filtering algorithm: Properties and Applica-
the potential of the new method in this respect.

tions,” Signal Processingvol. 45, pp. 357-368, 1995.
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