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ABSTRACT

Interior Point Optimization techniques have recently emerged
as a new tool for developing parameter estimation algo-
rithms [1, 2]. These algorithms aim to take advantage of
the fast convergence properties of interior point methods, to
yield, in particular, fast transient performance. In this pa-
per we develop a simpleanalytic centerbased algorithm,
which updates estimates with a constant number of com-
putation (independent of number of samples). The conver-
gence analysis shows that the asymptotic performance of
this algorithm matches that of the well-known least squares
filter (provided some mild conditions are satisfied). Some
numerical simulations are provided to demonstrate the fast
transient performance of the interior point algorithm.

1. INTRODUCTION

Consider the following system:

yi = xTi w� + vi i = 1; 2; : : :

whereyi 2 < is the output,xi 2 <M is the input vector,
w� 2 <M is the unknown parameter vector andvi 2 <
is additive measurement noise. The parameter estimation
problem is to identify the parameter vectorw� from in-
put/output pairsfxi; yig. The same task is also referred
to as adaptive system identification and has applications in
adaptive filtering [3].

The error measure used most commonly to evaluate the
performance of a particular parameter estimatew is the mean-
squared error:

Fn(w) =

nX
i=1

�n�i[yi � xTi w]2

where� is the forgetting factor typically included to allow
the estimation algorithm to adapt to slow changes in the pa-
rameter vectorw. It will be helpful to rewriteFn(w) in

vector notation,

Fn(w) = yTn�yn � 2wT
npxy(n) +wT

nRxx(n)wn

where

yn = [y1; y2; : : : ; yn]
T ;

� = diag(
p
�n�1; : : : ;

p
�; 1);

pxy(n) =

nX
i=1

�n�ixiyi;

Rxx(n) =

nX
i=1

�n�ixix
T
i :

Rxx(n) andpxy(n) are the input signal auto-correlation
matrix and the cross-correlation vector of desired and input
signal, respectively (both are exponentially weighted). The
least-squares solution is obtained by solvingrFn(w) = 0,
which yields

ŵLS(n) = R�1

xx (n)pxy(n): (1.1)

ŵLS(n) sometimes suffers from poor transient performance
due to ill-conditioning ofRxx(n) (caused, for example, from
a lack of observation data).

In Section 2 we develop an adaptive estimation algo-
rithm using concepts from interior point optimization. In
contrast to other algorithms based on similar ideas [2] our
algorithm has a computational complexity that does not in-
crease with the number of samples. In Section 3 we show
that the asymptotic performance of our algorithm matches
that of the least-squares estimator. Finally, we include some
numerical simulations to demonstrate the potential of our al-
gorithm, especially with regard to its transient performance.

2. ALGORITHM IPM

In the optimization theory literature interior point algorithms
are often applied to the convex feasibility problem: to find



a feasible pointy in a convex set� starting from an initial
bounded search region
0 � �. At each iteration the fol-
lowing steps are performed

1. Check feasibility of current estimateyn�1.

2. If infeasible, add a new convex cut to obtain
n (note
that we maintain� � 
n � 
n�1).

3. Updateyn�1 to the new “center”yn of 
n.

Since the sequence of sets
n are constantly shrinking, even-
tually the centeryn will satisfy yn 2 �. We shall give de-
tails on how to modify the feasibility set
n and on how to
determine its “center” as we apply the interior point algo-
rithm to the parameter estimation problem.

To apply the generic interior point method described
above to our parameter estimation problem, we first refor-
mulate the problem in the context of convex feasibility. At
each iterationn we look for a filterwn at the center of


n = fw 2 <M j Fn(w) � �2n; kwk2 � R2g:

Note that�n is typically selected in such a way that our ini-
tial pointwn�1 remains in the interior of the search region.
But sincewn�1 might still be close to the boundary we try
to re-center deeper into the interior of
n. To update to a
new estimatewn we define thelogarithmic barrier function
of 
n as

�n(w) = � log(�2n �Fn(w))� log(R2 � kwk2):

The function�n(w) is convex and approaches infinity on
the boundary of
n. The (unique) global minimizer of�n(w)
is called theanalytic centerof 
n. The gradient and Hes-
sian of�n(w) are given by

r�n(w) =
rFn
s1

+
2w

s2
; (2.2)

r2�n(w) =
(rFn)TrFn

s2
1

+
r2Fn
s1

(2.3)

+
4wTw

s2
2

+
2I

s2

wheres1 ands2 are slack variables defined bys1 := �2n �
Fn(w), ands2 := R2 � kwk2. The gradient and Hessian
of Fn(w) are given by

rFn = �2pxd(n) + 2Rxx(n)w;

r2Fn = 2Rxx(n):

We summarize the steps of Algorithm IPM1 as follows:

Step 1: Initialization. Let � > 0, R > 0 be given. Set

w0 = 0; pxy(0) = 0

Rxx(0) = 0; rF0(0) = 0

Step 2: Updating. Acquire new dataxn; yn. Then recur-

sively update

pxy(n) = �pxy(n� 1) + xnyn;

Rxx(n) = �Rxx(n� 1) + xnx
T
n :

Then

� updaterFn(wn�1) = �2pxd(n) + 2Rxx(n)wn�1

� let

rn = max

�
1

n
;

q
rFT

n (wn�1)(r2�n�1(wn�1)�1rFn(wn�1)

�

s1(n) = �n �Fn(wn�1)

= �rn

� r�n(wn�1);r2�n(wn�1) using Eqs. (2.2), (2.3)

Step 3: Centering. Forn > 0, perform Newton iterations

starting fromwn�1:

w := w� (r2�n(w))�1r�n(w) (2.4)

until �n is (approximately) minimized. 2

Some remarks are in order. The choice of constant pa-
rameters� andR will be discussed more in Section 3. In
Step 2 the update of the slack variable implies the following
update of the threshold�n,

�n = Fn(wn�1) + �rn

We have chosen to updates1(n) directly, to save our-
selves the computation ofFn(wn�1). If more than one
Newton iterations are needed in Step 3, we have to re-evaluate
r�n(w), r2�n(w) at the new iterate. While we can show
theoretically, that a constant number of Newton iterations
are sufficient to find an approximate analytic center of�n, in
practice taking just one Newton iteration ensures adequate
convergence. This results in substantial computational sav-
ings since the inversion of the Hessian in (2.4) is computa-
tionally the most expensive step in the algorithm. SinceFn,
rFn andr2Fn can all be calculated recursively, the over-
all complexity per iteration of Algorithm IPM1 isO(M3),
independent ofn.



3. CONVERGENCE ANALYSIS

We now analyze the asymptotic convergence of the IPM1
algorithm (its steady state behaviour). Two conditions will
be required in the analysis.

Condition 1 Weak Persistent Excitation.
There existn0 > 0; � > 0 such that for alln > n0

1

n

nX
i=1

xix
T
i � �I:

Condition 1 will be used in the proof of Lemma 3 to
upper bound the Hessian inverse[r2�n(wn�1)]

�1. Below
we outline the overall analysis by providing several lemmas
that are required for the final convergence theorem. Due to
the limited space, proofs will not be included in this short
paper.

Lemma 1 Assume the least-squares solution exists and is
bounded,kŵLS(n)k � t. LetR > t, then

wn = arg min
w2
n

�n(w);

the analytic center of
n is also bounded, and

kwnk � kŵLS(n)k � t:

Lemma 2 In algorithm IPM,wn�1 remains feasible with
respect to the updated feasible set
n.

Lemma 1 is intuitively satisfied since in the Interior Point
method we minimize both the mean-squared error as well as
the norm of the parameter estimatew. The proof of Lemma
2 is straight forward. One only needs to show that the slacks
s1; s2 remain positive atwn�1.

Lemma 3 Suppose Condition 1 holds and the noisevi is
i.i.d, then

hr�n(wn�1); [r2�n(wn�1)]
�1r�n(wn�1)i 12

� 1

�
+

p
2Rt

R2 � t2
:

Lemma 3 is important because it implies thatwn�1 is
an approximate analytic center of
n. Thus, only a constant
number of Newton iterations are required in the re-centering
step of IPM 1. Lemma 3 is also instrumental in the proof of
Theorem 1.

Theorem 1 Suppose Condition 1 is satisfied and the mea-
surement noise is i.i.d., then

E(kw� �wnk2) = O

�
1

n

�
;

wherew� is the true weight vector.

Theorem 1 states that the analytic centerwn will mini-
mize the mean-squared error cost function. Since it does so
at the same rate as the least-squares estimatorŵLS(n) we
can say that their asymptotic performance is equivalent.

4. SIMULATIONS

In this section we present results from two different simu-
lation experiments in which we compare the estimation ac-
curacy of Algorithm IPM to that of a typical least-squares
algorithm, RLS. First, the potential difference in transient
performance of the algorithms is demonstrated, and in a sec-
ond experiment we raise some new issues by considering an
abruptly changing channel.

For the first experiment, the input vector sequence is
generated from a white Gaussian process, the noise sequence
is also white Gaussian at a SNR of30dB, and the unknown
parameter vector is given by

w� = [0:1 �0:21 0:35 0:4 �0:6 0:3

0:8 �0:95 0:5 �0:7]T :

Figure 1 shows the error in the parameter vector

kŵ�w�k2

for RLS and IPM, averaged over 100 independent Monte
Carlo trials. It is verified that after an initial transient phase
both RLS and IPM show the same asymptotic behaviour.
Until approximately iteration 20, however, IPM has a lower
estimation error. The norm constraint in
n does not al-
low the parameter estimate to fluctuate wildly with incom-
ing data. Parameter settings for the two algorithms are as
follows:

IPM: � = 2; R = 100;w0 = 0; � = 0:99
RLS: Rxx(0) = 10�6I;w0 = 0; � = 0:99

The transient convergence of a parameter estimation al-
gorithm becomes even more significant when the parameter
vector to be identified changes in time. In our second exper-
iment the parameter vector starts off at the same values as
before and at iteration 100 it changes to

w� = [0:02 �0:04 0:07 0:08 �0:12 0:06

0:16 �0:19 0:1 �0:14]T :



It is well know that the “plain” RLS algorithm performs
poorly after an abrupt change, because at the time of the
change the state ofR�1

xx corresponds to a poor initialization
[4]. The problem is addressed by using a “sliding-window”
approach in which all data outside the current window is
erased from memory (e.g.,[5]). It is interesting to note that
implementing a sliding-window version of IPM is straight-
forward. We simply compute the cross-correlation vector
and auto-correlation matrix over a limited time window. For
the second experiment SNR is increased to80dB and the
length of the sliding window is 20. Otherwise all param-
eters remain the same. Figure 2 shows the estimation er-
ror of the sliding-window versions of RLS and IPM. It can
be observed that IPM sustains very fast convergence until
it reaches the steady-state error level. The sliding-window
RLS on the other hand drops out of the “fast-convergence”
mode sooner and thus takes much longer to come to a steady
state.

5. CONCLUSIONS

We have presented a novel Interior Point Optimization ap-
proach to parameter estimation, and shown its asymptotic
convergence to match that of the least-squares solution. Our
algorithm compares well to an alternative approach based
on similar ideas [2], as it does not require a bounded noise
assumption, and its computational complexity does not in-
crease with the number of observations. The main practical
advantage of the new algorithm lies in its fast transient per-
formance. Simulation examples were shown to demonstrate
the potential of the new method in this respect.
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Figure 1: Example 1: Transient performance in parameter
estimation
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Figure 2: Example 2: Changing Channel characteristics at
Iteration 100
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