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ABSTRACT

This paper presents Derivative DF'T Beamspace ESPRIT,
a new closed-form algorithm for direction-of-arrival (DOA)
estimation with uniform linear arrays or uniform rectangu-
lar arrays. The algorithm uses a novel virtual derivative
DFT beamforming procedure to improve upon the per-
formance of the recently developed DFT Beamspace ES-
PRIT algorithm. This beamforming procedure yields an
additional invariance relationship which the algorithm ex-
ploits to obtain higher estimation accuracy (the algorithm
is shown to outperform both DFT Beamspace ESPRIT and
Unitary ESPRIT). Further, Derivative DFT Beamspace
ESPRIT possesses all the attractive features (such as low
computational complexity, and the ability to provide auto-
matically paired source azimuth and elevation angle esti-
mates) of the two aforementioned algorithms.

1. INTRODUCTION

DFT Beamspace ESPRIT [5, 4Jand Unitary ESPRIT [5] are
recently developed algorithms that provide source DOA es-
timates via a closed-form procedure when uniform linear
linear arrays (ULAs) or uniform rectangular arrays (URAs)
are employed. The algorithms when used in conjunction
with URAs yield automatically paired source azimuth and
elevation angle estimates.

This paper introduces Derivative DF'T Beamspace ES-
PRIT, a new closed-form DOA estimation algorithm appli-
cable with ULAs or URAs. This algorithm improves upon
DFT Beamspace ESPRIT by employing virtual deriva-
tive DFT beamforming. Derivative DFT beamforming
yields additional invariance relationships which the algo-
rithm incorporates together with with the original set of
DFT beamspace relationships. Virtual incorporation of
these additional invariances yields improved estimation ac-
curacy without significantly increasing the computational
complexity. Results of computer simulations showing that
Derivative DFT Beamspace ESPRIT can outperform DFT
Beamspace ESPRIT and Unitary ESPRIT are presented.

The work of Anderson [1] provided motivation for em-
ploying derivative DF'T beamformers to improve estimation
accuracy. It was shown in [1] that estimates attaining the
element space Cramer-Rao bound could be obtained via
reduced dimensional beamspace processing, provided that
the column space of the beamformer employed included the

array response vectors corresponding to the true arrival di-
rections and their derivatives. Derivative DF'T Beamspace
ESPRIT however operates in a full dimensional beamspace.
It employs a full dimensional DFT beamformer and ex-
ploits additional invariances that result from a novel virtual
derivative beamforming procedure.

Multiple invariances existing in element space with ULAs
were exploited by Multiple Invariance ESPRIT [3] to im-
prove estimation accuracy. However, this was at the ex-
pense of losing the closed-form solution to the DOA esti-
mation problem. This is in contrast with Derivative DF'T
Beamspace ESPRIT which is a closed-form algorithm.

2. DERIVATIVE DFT BEAMSPACE ESPRIT
FOR ULAS

We consider an M element ULA with inter-element spacing
A = )\/2, where X is the wavelength of each of d narrowband
plane waves incident on the array. The array output at time
t can be modeled as

x(t) = As(t) + n(t) (1)

where A = [a(u1), -+, a(uq)] is the DOA matrix, s(t) is the
vector of signal complex envelopes (referenced to the array
center), and n(t) is the vector of noise complex envelopes.
The parameter p = 27(A/A)sin@ = 7u, where u = sin#,
specifies the source arrival angle; 0 € [—m/2,7/2] is the
arrival angle measured with respect to the normal to the
array axis. The array response vectors are centro-Hermitian
due to the choice of the array center as the phase reference,
and the corresponding ULA manifold is given by
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Derivative DFT beamspace ESPRIT employs the unitary
DFT beamforming matrix W that steers beams in the di-
rections p, = 2em/M, m = 0,1,..., M — 1. The matrix
W and the corresponding real-valued beamspace manifold
b(u) are defined below.
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It was shown in [5] that that the beamspace manifold b(u)
satisfies the following invariance property:

tan(u/2)TYb(u) = TYb(u), where (6)
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In the above definitions, ¢; = cos(mi/M) and s; =

sin(wi/M). The invariance property (6) was the basis for
the development of DFT Beamspace ESPRIT [5].

Derivative DFT Beamspace ESPRIT effectively employs
derivative DFT beamforming in addition to DFT beam-
forming. The derivative DF'T beamforming weight vector
that steers a derivative DFT beam in the direction us is
a(us), where the dot above a denotes the derivative with
respect to us. Eq. 2 yields

a(u) = Da(p) where (8)
D = (j/2) diag{—(M —1), =(M =3),---, (M =3), (M - 1)}

The beamforming matrix that steers derivative DF'T beams
to the angles pm = 2em/M, m =0,..., M —1is thus W =
DW, where W is defined in (3). The resulting derivative
DFT beamspace manifold, d(r) = W a(u), has the form

d(n) = W'D"a(n) = [do(n), di (), - -, du—1(w)]" (9)

where dp(n) = a(un)D"a(p) = —a(um)a(n) =
—%bm(u). Taking the derivative of (5) yields

1= bm(p) M cos [ (i — pm)]
tan ( 2 ) d(p) = 2 2 cos [%(u — /Am)]

This equation was used in [2] to derive an invariance rela-
tionship between adjacent DF'T beams and derivative DFT
beams. This relationship has the vector form:
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Using (9) and the fact that W is unitary, we obtain d(u) =
WHDH(WWH)a(y) = WHD#Wb(u). The DFT
beamspace manifold and the derivative DFT beamspace
manifold are thus related as follows: d(1) = Fb(u), where
F = WIDH#W. Eq. (10) can now be expressed in terms of
just the DFT beamspace manifold. We have

M
tan(u/2) |:I‘£/IF - FTS

The above invariance property, similar in form to (6) that
results from DFT beamforming, is formulated entirely in
terms of the DF'T beamspace manifold b(x). This allows for
incorporation of the derivative DFT beamspace invariance
relationships in virtual fashion, as described below.

De-emphasizing (11) by a factor k, 0 < k < 1, (for reasons
explained at the end of this section) and adding to (6) yields
the following new invariance property that applies to the
DFT beamspace manifold b(u):

tan(u/2) T b(p) = T3 b() where (12)
rY = rY4+r@¥Yr-rY)2 (13)
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When d sources impinge on the array, the correspond-
ing real-valued beamspace DOA matrix is B = WHA =
[b(p1),---,b(uq)]. (12) applies to each column of B and
we thus have

I‘iMBQM = T¥B, where (14)
Q, = diag{tan(p1/2), -, tan(ua/2)}

A signal subspace matrix S € ®*? that spans the column

space of B can be obtained from the array data (via a sin-
gular value decomposition of the beamspace data matrix or
an eigenvalue decompositon of the beamspace covariance
matrix). We have B = ST, where T is real-valued and
non-singular. Writing (14) in terms of S yields

rYswe, = TS, where (15)
v, = T'Q,T.

(15) is a real-valued, overdetermined set of equations which
can be solved for ¥,. The eigenvalues of ¥, are w; =
tan(pi/2), i = 1,...,d. These eigenvalues yield the source
DOA estimates: we have u; = sin(0;) = (2/7) tan™" (w;).

The de-emphasis factor k in (12) is introduced because
derivative DFT beamformers produce higher beamspace
noise power than DFT beamformers. Let us assume that
the noise vector n of (1) has covariance matrix oI. The
DFT beamformer W# induces the beamspace noise vector
n; = W¥Hn whose covariance matrix is ¢2I. The deriva-
tive DFT beamformer WD induces the beamspace
noise vector ng, = WHD# n, whose covariance matrix is
APWHDHDW. The variance of each element of ng is easily
shown to be ¢2Tr (D D)/M. The derivative DFT beam-
former thus increases the beamspace noise power by the
factor Tr (D¥D)/M. An appropriate deemphasis factor for
the derivative DF'T beamspace relationships is the recipro-
cal of the increase in standard deviation. The corresponding
value of k£ is

M

"=\ T D"D) (16)

Algorithm Implementation

The first stage of the algorithm is the estimation of the
beamspace signal subspace (spanned by the matrix S of
Eq. 15) that is induced by the DFT beamfomer WH, This



is done by first estimating the signal subspace matrix S’ in-
duced by the beamforming matrix Q¥ € ¢M*™ employed
by Unitary ESPRIT [5]. The beamformers W and QY
are unitary; the signal subspace matrix induced by the DFT
beamformer is thus S = W7 QS’. The following is a sum-
mary of Deriwative DF'T Beamspace ESPRIT:

1. Obtain the beamspace data matrix Y = Q" X, where
X = [x(1),%x(2),...,x(K)] contains K snapshots of ar-
ray data. Due to the simple structure of Q, this com-
putation requires only real additions and no multipli-
cations. Form the matrix S’ whose columns are the d
“largest” left singular vectors of the real-valued matrix
[Re{Y},Im {Y}] (see [5]). The size of this real-valued
matrix is double that of the original data matrix. This
“snapshot doubling” also occurs in element space if
forward-backward averaging of data is performed.

2. Compute S = (WHQ)Q’, where S is the signal sub-
space matrix corresponding to the DF'T beamformer
W, Obtain the least squares (or total least squares)
solution \ilu to the real-valued system of equations
rYS¥, = r¥S. T and TY are defined in (13)
and k is specified by (16).

3. Compute the eigenvalues w;, i = 1,...,d of \i’u. The
source DOAs are 1i; = sin(6;) = (2/7) tan™(&;).

The above summary reveals that Derivative DFT
Beamspace ESPRIT retains all the positive characteristics
of Unitary ESPRIT; it requires only real-valued compu-
tations throughout, incorporates a forward-backward av-
erage, and provides a reliability measure (DOA estimates
are unreliable if any eigenvalue w; in Step 3 is complex-
valued). Derivative DFT Beamspace ESPRIT requires one
more matrix multiplication than Unitary ESPRIT. Com-
puting S = (WHQ)S’ is the additional real-valued matrix
multiplication required (WH Q is a real-valued matrix that
can be precomputed). This is not a significant increase
in computational complexity, especially if the number of
sources d is small relative to the number of array elements.
The simulations of Sec. 4. show that this modest increase in
computational complexity is offset by improved estimator
performance.

3. DERIVATIVE DFT BEAMSPACE ESPRIT
FOR URAS

We consider a M x N element uniform rectangular array
(URA) centered at the origin and lying in the z—y plane. To
simplify the development we assume that the inter-element
spacing along the z and y directions is A/2. In addition
to the parameter u = mu, we define v = wv, where u =
sinfcos¢ and v = sinfsin¢g (0 € [0,7/2] is the source
elevation angle measured down from the z axis, and ¢ €
[0, 27] is the source azimuth angle). The array response to
a source arriving from the direction (u,v) is given by the
matrix

Alp,v) = ayp(pw)ay (v) a7

where the subscripts M and N define the size of the vector a
of (2). This response matrix can be vectorized using the vec

(column stacking) operator. The resulting array manifold
is a(u, v) = vec[A(u, v)].

2-D Deriwative DFT Beamspace ESPRIT employs a 2-
D DFT beamformer; the corresponding beamspace array
response matrix is B(u,v) = W ay (n)ak(v)Wi, where
the subscripts M and N give the dimension of the matrix W
of (3), and the superscript * denotes conjugation. Clearly,

B(p,v) = b (n)bi (v) (18)

where b(u) is given by (4). Since b (u) satisfies the in-
variance realtionship (12), we have tan(u/2)T'Y B(u,v) =
'Y B(u,v) Applying the property vec(ABC) = (C! ®
A)vec(B), where ® denotes the Kronecker matrix prod-
uct, we find that the stacked beamspace manifold vector
b(u, v) = vec[B(u, v)] satisfies

tan(p/2)Tab(p, v) = Tpuab(p,v) where (19)
Ty=IyoTY and T =Iy@T% (20)

Now, the 1-D beamspace manifold by (v) satisfies the in-
variance property tan(v/2)TVby(v) = T¥by(v). Using
this in (18) yields tan(v/2)B(u, v)(TV)T = B(u, v)(TH)T.
Applying the stacking property now yields

tan(v/2)I'y1b(u, v) = Tueb(pu,v) where (21)
T, =TV @Iy andT,o =TY @ Iu (22)

Applying (19) to the M N x d dimensional beamspace DOA
matrix B = [b(p1,11),...,b(14,va)] yields

r.iBQ, = T,2B, where (23)
Q. = diag{tan(p1/2),- -, tan(ua/2)}

Similarly, applying (21) to the DOA matrix B(u, v) yields

I,1BQ, = T,:B, where (24)
Q, = diag{tan(v1/2),---,tan(vq/2)}

The signal subspace matrix S that spans the column space
of B can be obtained as follows. Let K snapshots of array
data (in vectorized form) be grouped to form the MN x
K data matrix X. The corresponding (vectorized) DFT
beamspace data matrix is Y = (W& @ W)X [5]. The d
signal eigenvectors that comprise the columns of S are the
d “largest” left singular vectors of the real-valued matrix
[Re{Y},Im{Y}]. We have S = BT where T is a non-
singular real-valued matrix. Substituting B = ST~ in (23)
and (24) yield the signal eigenvector relationships

'SP, =T,2S  where

Fuls‘I’u - FVZS

v, =T'Q,T (25
where @, =T7'Q,T

All the quantities in the above expressions for ¥, and ¥,
are real-valued. We thus have ¥, + j¥, = T1(Q, +
j2,)T. The eigenvalues of the complex-valued matrix
W, + j¥, are thus w; = tan(u:/2) + jtan(v;/2), i =
1,...,d. These eigenvalues provide properly paired ar-
rival angle estimates for each source. The direction

cosines of the ith source relative to the x and y axes are
w, = (2/m)tan " [Re(w;)] and v; = (2/7)tan™![Im(w;)],
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Figure 1: Algorithm performance for a 10 element ULA:
Statistics for source 1.

respectively. The implementation of 2-D Derivative DFT
Beamspace ESPRIT is similar to that outlined earlier for
the 1-D case. The appropriate value for the de-emphasis
factor k£ for the 2-D case can be shown to be k =
VMN/+/Tr(D¥, Dy )Tr(DEDy), where Dy was defined
in (8).

4. RESULTS OF COMPUTER SIMULATIONS

Computer simulations were performed using a 10 element
ULA with inter-element spacing A = A\/2. The source sce-
nario consisted of two equipowered, uncorrelated sources
located at & = —3° and 3° (source separation ~ 26% of
the mainlobe width). The relative performance of DFT
Beamspace ESPRIT, Derivative DF'T Beamspace ESPRIT,
and Unitary ESPRIT as a function of the common source
SNR was investigated. Sample estimator statistics were ob-
tained using 800 independent trials and K=64 data snap-
shots per trial. Fig. 1 depicts the sample standard deviation
of the u estimate of the first source (performance curves for
the second source are not depicted because they are simi-
lar to those of the first). The figure shows that Derivative
DFT Beamspace ESPRIT outperforms Unitary ESPRIT.
The standard deviation of the Derivative DFT Beamspace
ESPRIT estimates for source 1 is an average of 16% lower
than that of the Unitary ESPRIT estimates over the SNR
range 0 to 12dB. It is also evident from the figure that
Derivative DFT Beamspace ESPRIT outperforms (full di-
mensional) DFT Beamspace ESPRIT.

Simulations for the 2D versions of the algorithms were
performed using a 4 x 4 uniform rectangular array with
half-wavelength interelement spacings along the x and y
directions. The simulation included two equipowered, un-
correlated sources located at (ui,v1) = (—0.125,—0.125)
and (ug,v2) = (0.125,0.125). 800 independent trials were
conducted with 64 snapshots per trial. Fig. 2 depicts the
rms estimation error for the first source, as a function of
the common source SNR (The rms error for source i is

RMSE; = /E{(@ — u:)2} + E{(%; — v:)2} ). The figure
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Figure 2: Algorithm performance for a 4 x4 URA: Statistics
for source 1.

reveals that 2D Derivative DFT Beamspace ESPRIT per-
forms better than 2D Unitary ESPRIT.

5. CONCLUSIONS

Deriwative DF'T Beamspace ESPRIT, a new closed-form al-
gorithm for DOA estimation with ULAs and URAs has been
presented. The 2-D version of the algorithm provides au-
tomatically paired source azimuth and elevation angle es-
timates via a closed-form procedure (computationally ex-
pensive search procedures are not required). The algorithm
exploits invariance relationships resulting from derivative
DFT beamforming in a novel virtual fashion to improve es-
timation accuracy. The estimator performance is shown to
be superior to that of DFT Beamspace ESPRIT and Uni-
tary ESPRIT.

REFERENCES

[1] S. Anderson. On optimal dimension reduction for sensor
array signal processing. Signal Processing, 30(2):245—
256, January 1993.

[2] C.P. Mathews. Improved closed-form DOA /frequency
estimation via ESPRIT using DFT and derivative DF'T
beamforming. In Proc. IEEFE Int. Conf. Acoust., Speech,
Signal Processing, pages 2916-2919, vol. 5, 1996.

[3] A. Swindlehurst, B. Ottersten, R. Roy, and T. Kailath.
Multiple invariance ESPRIT. [IEEE Trans. on Signal
Processing, 40(4):867-881, April 1992.

[4] M.D. Zoltowski, M. Haardt, and C.P. Mathews. Closed-
form 2D angle estimation with rectangular arrays via
DFT Beamspace ESPRIT. In 28th Asilomar IEEE Con-
ference on Signals, Systems, and Computers, pages 682—
686, 1994.

[5] M.D. Zoltowski, M. Haardt, and C.P. Mathews. Closed-
form 2D angle estimation with rectangular arrays in el-
ement space or beamspace via Unitary ESPRIT. IEFE
Trans. on Signal Processing, pages 316-328, February
1996.



