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ABSTRACT

In this paper, we link concepts from nonuniform sampling, smooth-
ness function spaces, interpolation, and denoising to derive a suite
of multiscale, maximum-smoothness interpolation algorithms. We
formulate the interpolation problem as the optimization of find-
ing the signal that matches the given samples with smallest norm
in a function smoothness space. For signals in the Besov space
B�
q (Lp), the optimization corresponds to convex programming in

the wavelet domain; for signals in the Sobolev spaceW�(L2),
the optimization reduces to a simple weighted least-squares prob-
lem. An optional wavelet shrinkage regularization step makes the
algorithm suitable for even noisy sample data, unlike classical ap-
proaches such as bandlimited and spline interpolation.

1. INTRODUCTION

The problem of signal reconstruction from nonuniformly sampled
data arises in many contexts, including sampling systems with
sampling jitter, the design of irregularly spaced antenna arrays, the
reconstruction of signals from missing samples, and the process-
ing of geophysical data. In higher dimensions, interpolation from
non-Cartesian coordinates is central to many important imaging
problems, such as tomography, synthetic aperture radar, and radio
astronomy. Computer graphics, in addition, must routinely process
nonuniformly distributed samples of images and volumes.

The signal interpolation problem is ill-posed in that there exist
an infinite number of continuous-time functions passing through a
given set of samples. Hence, interpolation must be formulated as
an optimization problem with side constraints to narrow down the
class of candidate solutions.

One popular reconstruction approach isbandlimited inter-
polation: we seek the bandlimited signal of minimum energy
that passes through the samples [1–4]. In this case, the optimal
minimum-mean-square-error solution is known [2], and regular-
ization schemes have been developed to improve the problem’s nu-
merical conditioning [3, 4]. Roughly speaking, bandlimited inter-
polation attempts to favor smooth interpolations by hard-limiting
their high-frequency content.

Unfortunately, many important signals and images (finite-
length signals and signals containing edges, for instance) cannot
be properly modeled as bandlimited. Furthermore, such signals
are often nonstationary.
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In this paper, we formulate a new approach to signal in-
terpolation from nonuniform samples. Inmultiscale maximum-
smoothness interpolationwe select the signal passing through the
samples that has minimum smoothness norm (hence maximum
smoothness) in an appropriate function space. Unlike the space
of bandlimited functions, smoothness spaces such as Sobolev and
Besov spaces contain life-like signals with discontinuities and non-
stationarities. Since these function spaces are simply parameter-
ized in the wavelet domain [5], our interpolation algorithm reduces
to straightforward processing of the wavelet coefficients of the sig-
nal samples. As a bonus, we will derive a simple yet powerful mul-
tiscale regularization scheme for interpolating noisy signals that
reduces to simple thresholding of the wavelet coefficients.

For signals containing singularities, wavelet-based interpola-
tion offers real performance advantages. Figure 1 demonstrates the
supremacy of wavelet-based interpolation over bandlimited and
spline interpolation for Donoho’s HeaviSine signal [6], which con-
tains both smooth and edgy regions.

After reviewing the relevant theory on wavelets and smooth-
ness spaces in Section 2, we present our algorithm in Sections 3
and 4. Section 5 provides several illustrative examples, while Sec-
tion 6 introduces regularization. We close in Section 7 with con-
clusions and perspectives on future work.

2. WAVELETS AND SMOOTHNESS SPACES

The discrete wavelet transform (DWT) represents a 1-D,
continuous-time signalf in terms of shifted versions of a low-
pass scaling function� and shifted and dilated versions of a pro-
totype bandpass wavelet function [7]. For special choices of
� and , the functions�j;k(t) � 2j=2 �

�
2jt� k

�
,  j;k(t) �

2j=2 
�
2jt� k

�
, j; k 2 ZZ form an orthonormal basis forL2,1

and we have the representation [7]

f(t) =
X
k

uj0;k �j0;k(t) +

1X
j=j0

X
k

wj;k  j;k(t);

with

uj;k �

Z
f(t)��j;k(t)dt; wj;k �

Z
f(t) �j;k(t) dt:

The scalej0 represents the coarsest scale under consideration; the
uj0;k ’s correspond to local means at this scale. We can easily con-
struct 2-D wavelets from the 1-D� and [7].

1In this paper, we consider only functions defined on a finite intervalI.
Define theLp(I) space as the set of all functions onI with bounded norm
kfkpp �

R
I
jf(t)jp dt.
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Figure 1: Interpolation of 256 noisy nonuniform samples of the
HeaviSine signal. (a) Original signal. (b) 256 nonuniform sam-
ples with additive white Gaussian noise of variance� = 0:3. Re-
sults from (c) regularized optimal bandlimited interpolation [3],
(d) cubic spline interpolation, (e) maximum-smoothness interpo-
lation, (f) regularized maximum-smoothness interpolation based
on wavelet thresholding.

For finite, discrete data, an orthonormal discrete wavelet trans-
formation matrixW that takes the data vector to a wavelet/scaling
coefficient vector can be constructed by “periodization” [8]. Since
W is orthonormal, we haveW�1 = W

T . Given a finite-length,
continuous-time signalf(t), t 2 I = [0; 1],2 definef as the col-
umn vector of lengthM � 2J whose elements are the dyadic sam-
plesfi � f(i=2J ), i = 0; : : : ;M � 1 at the starting (finest) scale
J > j0. That is,f � [f0; : : : ; fM�1]

T . In general, the elements
of the vectorWf will not equal the wavelet coefficients of the con-
tinuous time-signalf(t) unless the signal samples areprefiltered
[8,9]. Denoting the prefiltering matrix byP, the DWT coefficients
for scalesj < J can be written asw = WPf . Conversely, the
correct continuous-time signal samples can be obtained from the
inverse wavelet matrix transformation by “postfiltering.” Denote
the postfilter matrix asF. Then, we havef = FW

T
w. Define

2Without loss of generality, we assume thatI = [0; 1].

V � FW
T .

Wavelets provide a simple characterization for a wide vari-
ety of functionsmoothness spaces[5]. The norms of these spaces
measure signal smoothness: smaller norms imply smoother func-
tions. The scale ofBesov spacesB�

q (Lp(I)), 0 < � < 1,
0 < p � 1, 0 < q � 1, are particularly useful, for they contain
many life-like signals. For analyzing� and possessingr > �
vanishing moments [8], the Besov normkfkB�q (Lp(I)) can be de-
fined as a sequence norm on the wavelet coefficients off

kfkB�q (Lp(I)) � kuj0;kk
p
p +0@X

j�j0

 X
k

2�jp2j(p�2)jwj;kj
p

!q=p
1A1=q

:

The three hyperparameters have natural interpretations: ap-norm
of the wavelet coefficients is taken within each scalej, aq-norm is
taken across scale, and the smoothness parameter� thus controls
the rate of decay of thewj;k across scale (frequency). Very roughly
speaking, the parameter� corresponds to the number of well-
behaved derivatives off ; hence, the larger the�, the smoother
the functions inB�

q (Lp(I)) [5, 11]. Do not be misled by the ter-
minology “smoothness space” — for� < 1, Besov spaces contain
discontinuous functions.

A simple but useful set of Besov spaces are theSobolev spaces,
obtained asW�(L2(I)) � B�

2 (L2(I)) with p = q = 2. In the
wavelet domain, we have

kfkW�
2
(L2(I)) � kuj0 ;kk

2
2 +

 X
j�j0;k

j2�j wj;kj
2

!1=2

:

Note thatW 0(L2(I)) = L2(I).

3. MAXIMUM-SMOOTHNESS INTERPOLATION

The problem of signal interpolation from nonuniformly sampled
data can be stated as follows. Letf(t) be the signal under con-
sideration. In practical applications, only a finite segment of the
signal is available. Here, we assume thatf(t) is defined on the
finite interval I = [0; 1]. In addition, letft1; : : : ; tNg be the
(nonuniform) sampling points on the interval, whereN is the
number of samples. Without loss of generality, we assume that
0 � t1 < t2 < � � � < tN � 1. The available data are the sample
values at the sampling points, that is,ff(t1); : : : ; f(tN )g.

The problem is to estimate the original continuous-time signal
f from the given nonuniform samples according to some optimal-
ity criterion. When the given signal samples are noisy, the signal
estimation problem consists of both interpolation and denoising.
In our algorithm, the optimality criterion will be the Besov norm
of the reconstructed signal, which we will minimize in order to
maximize the smoothness of the reconstruction.

Define the dyadic points at scalej to be fi=2j ; i =
0; 1; : : : ; 2j � 1g. Define the scale-j dyadic intervalsIi �
[i=2j ; (i + 1)=2j). To simplify the derivation, we will approx-
imate the set of sampling pointsft1; : : : ; tNg with a subset of
dyadic points at a certain scalej = J . That is, let us assume
that ti = ni=2

J for i = 1; : : : ; N . The error resulting from this
approximation depends on the regularity of the signal and the scale
J .3 The starting scaleJ should be chosen large enough to make

3If jf(t)� f(�)j � Kjt� �j� , the approximation error isO(2��J ).



the dyadic approximation of sampling points accurate, as long as
the size of the resulting interpolation problem is manageable.

Being given samples of the signal only at the pointsti neces-
sarily means that we have no information at other dyadic points. In
terms of the wavelet transform, this means that we have no knowl-
edge of the scaling coefficients at points other thanti.

Denote theith row of the matrixV asvTi . Collecting the
rows of the equationf = Vw only for those indices for whichfi
is known, we can write the the following constraint equation on
the wavelet coefficientsw

Sw = f
N (1)

with S = [vTn1 ;v
T
n2 ; : : : ;v

T
nN ]T and

f
N = [fn1 ; fn2 ; : : : ; fnN ]T .

Because (1) is an underdetermined system of equations, there
exist many different solutions forw that match the given sampled
datafN: For the minimum Besov solution, we choose thew that
both satisfies (1) and minimizeskfkB�q (Lp(I)).

Because of the simple characterization of Besov norms in
terms of the wavelet coefficients off , we can repose this interpo-
lation problem as a wavelet-domain optimization problem. For a
general Besov spaceB�

q (Lp(I)), the problem of finding the signal
that obeys (1) while minimizingkfkB�q (Lp(I)) becomes a nonlin-

ear constrained optimization problem inIRN [10]. For p; q � 1,
this is a convex functional with linear constraints optimization
(while simple, for largeN the computational cost of this mini-
mization could be nontrivial). For Sobolev spaces, however, the
solution is even more straightforward.

4. INTERPOLATION IN SOBOLEV SPACE

In the Sobolev spacesW�(L2(I)), maximum-smoothness inter-
polation reduces to simple weighted least-squares optimization in
the wavelet domain. Since this case provides many insights into
the more general Besov space interpolation problem, we will em-
phasize it here.

Let w = [w1; w2; : : : ; wM ]T be the wavelet coefficients of
the samples and letji, i = 1; : : : ;M , denote the scale of the
wavelet coefficientswi, i = 1; : : : ;M . Denoting theith column
of the matrixS by si, we obtain the following equation by weight-
ing the columns ofS and the corresponding elements ofw:

[2��j1s1; 2
��j2s2; : : : ; 2

��jM sM ]

2664
2�j1w1

2�j2w2

...
2�jMwM

3775 = f
N: (2)

Let eS = [2��j1s1; 2
��j2s2; : : : ; 2

��jM sM ]. Then, the least-
squares solution of (2) can be written aseST (eSeST )�1fN , and the
the solution to the original problem is obtained by restoring the
weighting:

ew = diagf2��j1 ; : : : ; 2��jM g eST (eSeST )�1fN :
The desired time-domain interpolation can be obtained by inverse
wavelet transform ofew. Ignoring the error in dyadic approxima-
tion, the interpolated signal is maximally smooth in the sense of
Sobolev norm among all functions passing through the samples.
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Figure 2:Maximum-smoothness interpolation of 256 nonuniform
samples of the HeaviSine signal. (a) 256 nonuniform samples.
Maximum-smoothness interpolation with (b)� = 0:5 and (c)� =
0:9.

5. EXAMPLES

To illustrate the behavior of the maximum smoothness interpolator
for both smooth and irregular signal regions, we choose Donoho’s
HeaviSine signal [6] for the test.

For a discrete realization of the interpolation algorithm, we
approximate the underlying continuous-time signal by its uniform
samples at 1024 points. For signals living in the intervalI = [0; 1],
this corresponds to assuming that the finest scale isJ = 10. In
order to eliminate the error due to dyadic approximation to isolate
the behavior of the interpolation algorithm, we assume that the set
of nonuniform sampling points is a subset of the2J dyadic points.
In all cases we employed theD8 wavelet [7].

Figure 2 illustrates the performance of the interpolator when
the nonuniform samples are relatively dense. We randomly chose
N = 256 of the1024 dyadic points as the nonuniform sampling
points. In the Figure we plot the 256 nonuniform samples, and re-
constructions using maximum smoothness interpolation with� =
0:5 and0:9. For a properly chosen�, the maximum-smoothness
interpolation approximates the original signal very well. Note how
larger� results in more signal smoothing.

Figure 3 illustrates the performance of the interpolator when
the sampling density is low. We randomly choseN = 32 of the
1024 dyadic points as the nonuniform sampling points. In the Fig-
ure we plot the 32 nonuniform samples, and reconstructions by
maximum smoothness interpolation with� = 0:8 and2:0. Again,
we see that the smoothness of the interpolated signal increases with
�. Because the sampling density here is low, we must impose more
regularity in order to connect the given sample points. Sampling
destroys the details of the original signal, so it is natural for the in-
terpolated signal to be smoother than the original. However, with
our multiscale algorithm, the interpolated signal retains the dis-
continuities of the original signal. This is a clear advantage over
usual bandlimited signal interpolation, where the discontinuities
are necessarily smoothed.
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Figure 3: Maximum-smoothness interpolation of 32 nonuniform
samples of the HeaviSine signal. (a) 32 nonuniform samples.
Maximum-smoothness interpolation with (b)� = 0:8 and (c)� =
2:0.

6. REGULARIZATION VIA WAVELET DENOISING

When noise corrupts the signal samples, maximum-smoothness in-
terpolation may not satisfactory. See, for example, Figure 1 where
we interpolate under the same conditions as in Figure 2 except with
samples corrupted by additive white Gaussian noise.

Although the interpolated signal becomes smoother as we in-
crease�, we can never completely remove the noisy character of
the interpolated signal. This is because the interpolated signal must
necessarily pass through all sample points, even when the sample
values are noisy. Hence, the smoothest function matching noisy
samples can be very irregular (with large smoothness norm).

Regularization can be employed to yield smoother interpola-
tions at the expense of errors in matching the given sample points.
The regularization of functions in Besov space can be formulated
as a variational problem in the wavelet domain [11]. Astonish-
ingly, in many cases regularization can be accomplished simply
by shrinking the signal wavelet coefficients. Figure 1(f) shows the
signal obtained by hard thresholding the wavelet coefficients of the
signal in (e) with threshold� = 0:7 before inverting the wavelet
transform. By proper choice of the threshold, the sampling noise
can be suppressed at the expense of only minimal distortion in the
estimated signal.

Other interpolation algorithms do not have this joint interpo-
lation/regularization capability. Bandlimited interpolation leaves
much to be desired, because the bandlimit cannot be set appro-
priately: A large bandlimit results in noisy interpolation (see Fig-
ure 1(c)), while a small bandlimit oversmooths the signal. Even
worse, cubic spline interpolations are extremely noisy, especially
when the sampling is very irregular (see Figure 1(d)).

The choice of the regularization parameter (wavelet threshold)
depends on the properties desired in the underlying signal. Unfor-
tunately, the interpolated signal obtained by minimum-smoothness
norm interpolation is difficult to characterize, even if the noise in
the signal samples is white Gaussian.

7. CONCLUSIONS

In this paper, we have demonstrated the efficacy of a new mul-
tiscale maximum-smoothness interpolator for both signal recon-
struction and joint reconstruction/denoising. Our algorithm is
straightforward, owing to the remarkably simple characterization
of the Sobolev and Besov smoothness spaces by wavelets. In fact,
for Sobolev space, the entire algorithm reduces to a simple least-
squares problem in the wavelet domain. Extension to higher di-
mensions (for image and volume data) is trivial.

Investigation of the behavior of maximum smoothness inter-
polator for other smoothness spaces remains a topic of future re-
search. Currently, we are developing methods to automatically set
the smoothness and regularization parameters for a given problem
and investigating the accuracy of the dyadic sampling approxima-
tion in terms of signal regularity.
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