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ABSTRACT

In practical radar applications of the adaptive matched filter
algorithm, the covariance matrix for the clutter-plus-noise is
typically estimated using data taken from range cells
surrounding the cell under test.  In a nonhomogeneous
environment, this can lead to a mismatch between the mean of
the estimated covariance matrix and the true covariance matrix
for the range cell under test.  Closed form expressions are
provided, which give the performance for such cases. These
equations are exact in some cases and provide useful
approximate results in others. Performance depends on a small
number of important parameters. These parameters describe
which types of mismatches are important and which are not.
Numerical examples illustrate how performance varies with
each of the important parameters.  Monte Carlo simulations are
included which closely match the predictions of our equations.

1. INTRODUCTION

In most adaptive radar detection algorithms, the clutter-plus-
noise in the cell under test is characterized using samples taken
from range cells that neighbor the cell under test. This can lead
to a mismatch between the true clutter-plus-noise statistics (in
the cell under test) and those used to design the adaptive
processing scheme.  Such mismatches can occur in
nonhomogeneous noise-plus-clutter cases.  The purpose of this
research is to develop analytical formulas that characterize the
loss in performance due to this mismatch. Formulas of this type
do not currently exist.

To understand why there may be a mismatch between the
statistics of neighboring range cells, consider the case of ground
clutter in airborne radar. The ground clutter returns
corresponding to neighboring range cells are produced by
reflections from different portions of ground. If very different
types of objects reside on these different portions of ground, it is
reasonable to expect that the clutter returns from these different
range cells will be different. This behavior has been observed in
measured data.

Consider a popular constant false alarm rate (CFAR) algorithm
called the adaptive matched filter algorithm [1,2] with the test
statistic
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In (1), the observed N dimensional complex vector x consists of
either zero-mean complex Gaussian noise-plus-clutter [3] with
covariance matrix 

tR  or signal plus zero-mean complex

Gaussian noise-plus-clutter with covariance matrix 
tR .  The

signal that is added to the noise-plus-clutter is κs where s is a
unit length signal vector which is completely known and κ is an
unknown complex constant.  The magnitude of κ sets the signal-
to-noise ratio.  The denominator of (1) provides the correct
normalization for CFAR (for cases without mismatch). While it
would be desirable to use the true covariance 

tR in (1) in place

of eR , tR  is not available.  Instead an estimated covariance

matrix eR  is used. eR  is obtained from the maximum likelihood

(ML) estimate for the case where a set of independent reference
vectors x(k), k = 1,...,L are available, all with the same
distribution as the cell under text data x (even if this is not truly
the case).  Specifically, eR  is taken as
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which differs from the ML estimate by a scale factor. Note that
in practice one frequently finds eR  is not close to a scaled

version of t
R . In fact, the expected value ofeR  may differ from

tLR  which implies that even as L→∞, (1/L) e
R  will not

converge to t
R .  For the purpose of this paper we assume a

mismatch in the reference data such that (1/L) E{ eR } = sdR  ≠

tR .  For simplicity we assume that the reference data vectors

are independent and identically distributed (iid) with a zero-
mean complex Gaussian distribution with covariance matrix

sdR .  Also, the reference data are independent from the data

from the cell under test.

In section II, we develop the distribution of the test statistic in
(1) under some conditions. The conditions assume certain
quantities are uncorrelated. If these quantities are correlated,
our results are only approximate, but numerical investigations
indicate that the approximations are very accurate. These
conditions also assume that the value of a specific quantity, a
generalization of what was called the loss factor in previous
research [4], is known, but the probability density function (pdf)



of the loss factor is found in Section III.  Closed form
expressions for the probability of false alarm and detection are
provided in Section IV.  Numerical evaluations of these
expressions are provided in Section V to illustrate the effects of
covariance matrix mismatch on performance.  Conclusions are
provided in Section VI.

2. DISTRIBUTION OF THE TEST
STATISTICS

First apply a coordinate transform, which consists of
multiplication by 2/1−

sdR , to the observed vector from the cell

under test, the reference data vectors and to the signal vector.
This transform whitens the reference data.  Next, normalize the
transformed signal vector so that it is again a unit vector. Call
this transformed unit signal vector ν . The transformed signal is

taken to be νκβν ])[( 2/11sRs sd

H −= , so that signal-to-noise ratio is

maintained. The important parameter 2|| β  is called the signal-

to-secondary noise ratio (SSNR).  It plays a role similar to the
role the signal-to-noise ratio plays in cases without mismatch.
Next, another transformation of coordinates, which consists of
multiplication by HHB ),( νν , is made to the cell under test

vector, the reference data vectors and to the signal vector. Here

νB is a matrix whose N-1 rows consist of a set of N dimensional

vectors which span the space orthogonal to ν . The overall
matrix HHB ),( νν  is taken to be unitary so that the signal and

noise powers are preserved. Call the transformed vector for the
cell under test TTzdy ),(= .  Here d is a scalar that describes

the component of the observed vector x which lies in the
direction of s.  On the other hand, z is an N-1 dimensional
vector describing the component of x that is orthogonal to s. The
transformed reference vectors employ the notation

TTkzkdky ))(),(()( = . Under the assumptions outlined, we find
that (1) becomes
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Now assume that z and d are uncorrelated. Then using the
results from [5, pp. 113-118] and [6, pp. 27-29], it follows that
the denominator of (3), when conditioned on z, z(1),...z(L), is a
constant factor of 1/2 times a central chi-squared distributed
random variable, with 2(L-N+1) degrees of freedom. Such a
random variable is denoted by )0(2

)1(2 +− NLχ . Next, note that the

term in the numerator of (3), inside the |  
2| ,  is
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Under either signal absent or signal present, the variance of ry
when conditioned on z, z(1), … z(L) is
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where νν 2/12/1}{ −−= sdtsd
H RRRdVar . Next, we properly normalize

(multiply by ρ) the numerator of (3) so it is the square of a unit-
variance complex Gaussian. Conditioned on z, z(1),...z(L),
another Theorem from [5, pp. 113-118] shows that 22/1 || ryρ  is a

constant factor of 1/2 times a non-central chi-squared distributed
random variable with 2 degrees of freedom, )||( 22

2 βρχ ,  when

signal is present. When signal is absent, the same holds true
with β = 0.  Thus, in summary, conditioned on z, z(1),...z(L) the
test statistic in (3) is the ratio of a non-central chi-squared
random variable with 2 degrees of freedom to ρ times a central
chi-squared random variable with 2(L-N+1) degrees of freedom
as in
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The result in (6) requires that z and d to be uncorrelated to be
exactly true. We demonstrate in Section 5 that results using (6)
provide excellent approximation even when z and d are
correlated.

3. DISTRIBUTION OF ρ
Consider the random variable
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Now, from (7), P is the ratio of two random variables. From [6]

the first, 1s , is a central chi-squared random variable with

)2(2 +− NL degrees of freedom and 2s  is independent of 1s .

Note that z is complex Gaussian with zero mean and covariance
matrix

H
vsdtsdvMM BRRRBR 2/12/1 −−= (8)

We define the eigenvalues of the 
MMR  to be .,..., 121 −ΦΦΦ N

It can be shown that 2s  has characteristic function
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jit , where 1−=i  and t is the frequency

variable.  By expanding this characteristic function into a partial
fraction expansion and using a Fourier transform, one finds the

pdf of 2s . For example, if no eigenvalues are repeated, then
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transform results, the pdf for 2s  is
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as long as 2s  is positive (the pdf is zero otherwise). If a

particular φφ =j  is repeated r  times, this leads to replacing

r  terms on the right hand side of (9) with (the new partial
fraction expansion) ∑

= −

r

j
j

j

it

B

1 )21( φ
 and thus these terms

contribute

( )∑
=

−

−
Γ

r

j
j

j

j

s

j

s
B

1

2
1

2 )
2

exp(
)(2

/

φφ
φ (11)

to (10) as long as 2s is positive (the pdf is zero otherwise).

Using (10) and (11) as appropriate one can find the pdf of 2s .

Now returning to (7), standard techniques for mapping of
random variables give (

Xf is the pdf of X)
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for p ≥ 0. For example, if no eigevalues of 
MMR  are repeated

(12) becomes
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If an eigenvalue φ is repeated r times then
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should be used to replace the terms in (13) corresponding to the
repeated eigenvalues. Using (13) and (14) allows one to find a
closed form expression for the pdf of P in any given case. Then
using mappings of random variables, it is straightforward to
show that
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for 0 < ρ < 1/Var{d}, otherwise the pdf is zero.

4. PROBABILITY OF DETECTION AND
FALSE ALARM

The distributions of ρ found in the last section lead to an easy
way to derive the detection and false alarm probabilities.  The
approach is similar to that taken in [2] for cases without

mismatch. Conditioned on ρ, we have already shown in (6) that
our test statistic has exactly the same form as the one in [2,
equation (27)], so by the same arguments given there we find
that the detection probability conditioned on ρ is obtained from
[2,equation (33)] as
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yyG  as defined in [2]. In (16) τ is the

threshold (3) is compared to.  Using (15) and (16) gives the
unconditional probability of detection as
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The false alarm probability follows from (16) and (17) with
β=0.

5. EFFECTS OF MISMATCH:
NUMERICAL RESULTS

For the case with mismatch, (13) (15) and (17) imply that
performance is sensitive to how much Var{d} and the
eigenvalues of 

MMR  differ from unity1.

Extensive numerical studies using (15) and (17) indicate that
the probability of detection generally increases as Var{d}
decreases, with the eigenvalues of 

MMR  being fixed. This is

reasonable since 1/Var{d} measures the signal-to-noise ratio of
d and any signal energy will end up in d. A particular example
of this is illustrated in Fig. 1 for cases with N=2, L=4, where
calculations using (15) and (17) are shown to match Monte
Carlo simulations results. When Var{d} is fixed, we see that
increasing any eigenvalue, 

jΦ  causes a decrease in probability

of detection. This is reasonable since each eigenvalue can be
thought of as the noise-plus-clutter power in a particular one-
dimensional subspace after imperfect whitening. Clearly
increasing noise-plus-clutter power should lead to a decrease in
performance. An example of this is shown in Fig. 2 for some
N=2, L=4 cases. Our studies also indicate that increasing
Var{d} or any of the eigenvalues of 

MMR  leads to an increase in

the probability of false alarm.  This can be expected based on

the interpretations of Var{d} and jφ  as being noise powers.

When z and d are uncorrelated, our results are exactly correct.
When z and d are correlated, our equations are only
approximately true, but numerical results show that they give
very accurate approximations. Some typical examples are shown
in Fig. 3 for N=2, L=4 cases, for several values of

                                                       
1 β, N and L affect performance in a similar way as for cases
without mismatch, if β is viewed as SNR.



}{ *zdErzd = . We can see that the difference in probability of

detection is very small in all cases. Through our study, we found
that the maximum error is typically observed for the maximum

value of zdr (for the covariance matrix of TTzd ),(  to be

positive definite, zdr must be less than this maximum value). In

a few cases, those with zdr  near its maximum value, the curves

are a bit farther apart. A case with the maximum error we found
in our study is shown in Fig. 4.

6. CONCLUSIONS

An analysis of the performance of the adaptive matched filter
algorithm has been provided for cases where the data used to
estimate the covariance matrix is not matched to the true
covariance matrix of the data to be tested. Closed form
expressions are given to estimate the probability of false alarm
and detection. The equations indicate that performance depends
on a few critical parameters.  These parameters happen to be the
eigenvalues of the covariance matrix of the observations after
the imperfect whitening that occurs due to the covariance matrix
mismatch, the signal-to-secondary-noise ratio, the observed
vector size and the number of reference samples used to form
the covariance matrix estimate.

Var{d}=0.90

Var{d}=0.70

Var{d}=0.50

  line : theoretical value
  ∗ + x : Monte Carlo test
  C=[ 0.20  0.25  0.50 ]

Fig. 1. Probability of detection variation with Var{d}

  line : theoretical value
  ∗ + x : Monte Carlo test
  Var{d}=1.00

C=[ 3.00 3.00 3.00 ]

C=[ 2.00 2.00 2.00 ]

C=[ 1.00 1.00 1.00 ]

Fig.2. Probability of detection variation with ],,[ 321 φφφ=c

           rzd = 0
          r rzd zd= ×0 70. max{ }
           r rzd zd= ×0 99. max{ }
  var{d}=40, var{z}=20
  max{ } .rzd = 2828
  N=2, L=4

Fig. 3.  Typical case when d and z are correlated.

            rzd = 0
            r rzd zd= ×0 70. max{ }
            r rzd zd= ×0 99. max{ }

  var{d}=50, var{z}=50
  max{ }rzd = 50

   N=2, L=4

Fig. 4.  Maximum error case when d and z are correlated.
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