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ABSTRACT In (1), the observedil dimensional complex vector consists of
either zero-mean complex Gaussian noise-plus-clutter [3] with

In practical radar applications of the adaptive matched filter . . .
covariance matrix R or signal plus zero-mean complex

algorithm, the covariance matrix for the clutter-plus-noise is . . . .
typically estimated using data taken from range cells Gaussian noise-plus-clutter with covariance matRx. The
surrounding the cell under test. In a nonhomogeneous signal that is added to the noise-plus-cluttekdsvheres is a
envwonment, this can lead to a mismatch between .the mean _Ofunit length signal vector which is completely known anig an
the estimated covariance matrix and the true covariance matrix ,nknown complex constant. The magnitude skts the signal-

for the range cell under test. Closed form expressions arey, nise ratio. The denominator of (1) provides the correct
provided, which give the performance for such cases. These,malization for CFAR (for cases without mismatch). While it

equathns are exa(;t in some cases and provide usefuIi/\/ould be desirable to use the true covaria®é (1) in place
approximate results in others. Performance depends on a smal

number of important parameters. These parameters describedf R,, R is not available. Instead an estimated covariance
which types of mismatches are important and which are not. matrix R is used.R, is obtained from the maximum likelihood
Numerical examples illustrate how performance varies with
each of the important parameters. Monte Carlo simulations are
included which closely match the predictions of our equations.

(ML) estimate for the case where a set of independent reference
vectors x(k), k = 1,...,L are available, all with the same
distribution as the cell under text datgeven if this is not truly

the case). SpecificallyR, is taken as

1. INTRODUCTION

L
In most adaptive radar detection algorithms, the clutter-plus- R = z x( k) X k)H 2
noise in the cell under test is characterized using samples taken ¢ &

from range cells that neighbor the cell under test. This can lead ) )
to a mismatch between the true clutter-plus-noise statistics (inhich differs from the ML estimate by a scale factor. Note that

the cell under test) and those used to design the adaptivdn practice one frequently find®, is not close to a scaled
processing scheme. Such mismatches can occur in . .
nonhomogeneous noise-plus-clutter cases. The purpose of thi¥ersion of R . In fact, the expected valueRf may differ from
research is to develop analytical formulas that characterize theLR[ which implies that even ak -, (1/L) R, will not
loss in performance due to this mismatch. Formulas of this type

do not currently exist. converge toR . For the purpose of this paper we assume a

To understand why there may be a mismatch between theMismatch in the reference data such (4t) E{R)} = R, #

statistics of neighboring range cells, consider the case of groundR . For simplicity we assume that the reference data vectors
clutter in airborne radar. The ground clutter returns

corresponding to neighboring range cells are produced by
reflections from different portions of ground. If very different
types of objects reside on these different portions of ground, it is R
reasonable to expect that the clutter returns from these differenfrom the cell under test.
range cells will be different. This behavior has been observed in
measured data.

are independent and identically distributed (iid) with a zero-
mean complex Gaussian distribution with covariance matrix
Also, the reference data are independent from the data

In section Il, we develop the distribution of the test statistic in

(1) under some coitibns. The conditions assume certain

Consider a popular constant false alarm rate (CFAR) algorithmquantities are uncorrelated. If these quantities are correlated,
called the adaptive matched filter algorithm [1,2] with the test our results are only approximate, but numerical investigations
statistic indicate that the approximations are very accurate. These
conditions also assume that the value of a specific quantity, a
generalization of what was called the loss factor in previous

_Is"Rx[? 1)
AME |s"R's| research [4], is known, but the probability density function (pdf)



of the loss factor is found in Sectioli. Closed form
expressions for the probability of false alarm and detection are
provided in Section IV. Numerical evaluations of these
expressions are provided in Section V to illustrate the effects of
covariance matrix mismatch on performance.
provided in Section VI.

2. DISTRIBUTION OF THE TEST
STATISTICS

First apply a coordinate transform, which consists of
multiplication by de‘“z, to the observed vector from the cell

Conclusions are

Under either signal absent or signal present, the varian§e of

when conditioned om, z(1), ... z(L}s

1

var {y,} = —= (5
p

Var {d} + z" R}z
where Var{d}=v”F§;’2RF§$’2v- Next, we properly normalize

(multiply by p) the numerator of (3) so it is the square of a unit-
variance complex Gaussian. Conditioned »n z(1),...z(L),
another Theorem from [5, pp. 113-118] shows fgfy [ is a

constant factor of/2 times a non-central chi-squared distributed

under test, the reference data vectors and to the signal vectofandom variable witl2 degrees of freedomy’(p| B [), when
This transform whitens the reference data. Next, normalize thesignal is present. When signal is absent, the same holds true

transformed signal vector so that it is again a unit vector. Call
this transformed unit signal vectbt . The transformed signal is

taken to beBv =[(s"R;s)"*k]v, so that signal-to-noise ratio is
maintained. The important parametey | is called the signal-

to-secondary noise ratio (SSNR). It plays a role similar to the
role the signal-to-noise ratio plays in cases without mismatch.
Next, another transformation of coordinates, which consists of
multiplication by (v,B/')", is made to the cell under test

with 8= 0. Thus, in summary, conditioned anz(1),...z(Lxhe

test statistic in (3) is the ratio of a non-central chi-squared
random variable witl2 degrees of freedom fo times a central
chi-squared random variable wifL-N+1) degrees of freedom
asin

X:(PIBT)

Nae B px 2 ., (0) (©)

vector, the reference data vectors and to the signal vector. Here‘rhe result in (6) requires thatandd to be uncorrelated to be

B, is a matrix whosé\-1 rows consist of a set df dimensional
vectors which span the space orthogonal\to The overall
matrix (v, Bl')" is taken to be unitary so that the signal and

noise powers are preserved. Call the transformed vector for the

cell under testy = (d,z")". Hered is a scalar that describes

the component of the observed vectorwhich lies in the
direction ofs. On the other handz is an N-1 dimensional
vector describing the componentothat is orthogonal te. The
transformed reference vectors employ the notation
y(k) = (d(k),z(k)")". Under the assumptions outlined, we find
that (1) becomes

©)

where fzd = Z Z(k)d(k)H y 6'd2 =

k=1

R =Y z(k)z(k)" -

k=1

d(k)d (k)" and

=1

Now assume thaz and d are uncorrelated. Then using the
results from [5, pp. 113-118] and [6, pp. 27-29], it follows that
the denominator of (3), when conditioned ore(1),...z(L)js a

constant factor ofl/2 times a central chi-squared distributed
random variable, witi2(L-N+1) degrees of freedom. Such a

random variable is denoted bvﬁ(L_Nﬂ) (0) . Next, note that the
term in the numerator of (3), inside thd”, is

L

y, =d - Z d(k)z(k)" Rz (4)

exactly true. We demonstrate in Section 5 that results using (6)
provide excellent approximation even whenand d are
correlated.

3. DISTRIBUTION OF p
Consider the random variable

z"z

)

Now, from (7),P is the ratio of two random variables. From [6]
the first, S, is a central chi-squared random variable with

2(L — N + 2) degrees of freedom an8, is independent of, .
Note thatz is complex Gaussian with zero mean and covariance
matrix

1/2 1/2

Rm =BR4"RR:B/ ®

We define the eigenvalues of e, tobed, , d,,. P _,.

It can be shown thatS, has characteristic function
N-1

|_I (1-2itd )™, where i =+/—1 andt is the frequency
-

variable. By expanding this characteristic function into a partial
fraction expansion and using a Fourier transform, one finds the

pdf of S,. For example, if no eigenvalues are repeated, then

N-1 N-1 b

1 j
2it(0j

MN—== 9)
-11-2itg,  F1-




mismatch. Conditioned op, we have already shown in (6) that
our test statistic has exactly the same form as the one in [2,
equation (27)], so by the same arguments given there we find
transform results, the pdf fd, is that the detection probability conditioned pris obtained from
[2,equation (33)] as

N-1
with b, :(pj’\‘-z |‘|((pj _(H()-l. Using well known Fourier
k=1,k# |

= b s, 10
fo ()= —expC-—2) (10) N g

PDIP =1- LNL (TOmGln ﬂ|2p
(I+to (L-N+1-m)'m +10
as long asS, is positive (the pdf is zero otherwise). If a
(16)
particular(OJ- = is repeatedr times, this leads to replacing

m-1,,k X . .
I terms on the right hand side of (9) with (the new partial WhereGm(y) :eXp(_y)Z% as defined in [2]. In (16) is the
k=0 ™

fraction expansion) « B, and thus these terms
;(1_2“(,,)1 threshold (3) is compared to. Using (15) and (16) gives the
contribute unconditional probability of detection as
i1 1/Vvar{d}
Z B. Mexp(—i) (11) R = IPD|p f,(pIH,)dp an
G 2T (e 2¢ 0

. The false alarm probability follows from (16) and (17) with
to (10) as long asS,is positive (the pdf is zero otherwise). =0 P y (16) (a7

Using (10) and (11) as appropriate one can find the p&, of
5. EFFECTS OF MISMATCH:
Now returning to (7), standard techniques for mapping of NUMERICAL RESULTS
random variables givef( is the pdf ofX)
For the case with mismatch, (13) (15) and (17) imply that
performance is sensitive to how muctar{d} and the

fo(p) = SZ:OSZ fsl (ps) fsz (s,)ds (12) eigenvalues oR  differ from unity.

©

Extensive numerical studies using (15) and (17) indicate that

for p = 0. For example, if no eigevalues &, are repeated the probability of detection generally increases \&a{d}

(12) becomes decreases, with the eigenvalues RYf,, being fixed. This is
£(0) N(L-N+2)b, p-N (13) reasonable sincg/Var{d} measures the signal-to-noise ratio of
P)=)————— i3 d and any signal energy will end updnA particular example
P=2 G ) y sig gy pdnA p p

of this is illustrated in Fig. 1 for cases witk=2, L=4, where
calculations using (15) and (17) are shown to match Monte
Carlo simulations results. Wheviar{d} is fixed, we see that

r B/(L-N+j+Dip-"* (14) increasing any eigenvaluey, causes a decrease in probability

,Zi(j “DI(L-N+1)!¢ (p+1/ @) " of detection. This is reasonable since each eigenvalue can be

. ) thought of as the noise-plus-clutter power in a particular one-
should be used to replace the terms in (13) corresponding to they; oncional subspace after imperfect whitening. Clearly

repeated eigenvalue_s. Using (13) and (14) "’_‘HOWS one to find aincreasing noise-plus-clutter power should lead to a decrease in
closed form expression for the pdffin any given case. Then  yotormance. An example of this is shown in Fig. 2 for some

using mappings of random variables, it is straightforward to N=2, L=4 cases. Our studies also indicate that increasing
show that

If an eigenvaluep is repeated’ times then

Var{d} or any of the eigenvalues &, leads to an increase in

1 the probability of false alarm. This can be expected based on
_ _H p
L(IH) = L (pIH) = B, 3 as) . . e ©
-Varf{d}p FL-Var{d} p the interpretations of Var{d} anwj as being noise powers.
for 0 < p < 1/Var{d}, otherwise the pdf is zero. Whenz andd are uncorrelated, our results are exactly correct.
When z and d are correlated, our equations are only
4. PROBABILITY OF DETECTION AND approximately true, but numerical results show that they give
FALSE ALARM very accurate approximations. Some typical examples are shown

in Fig. 3 for N=2, L=4 cases, for several values of
The distributions op found in the last section lead to an easy
way to derive the detection and false alarm probabilities. The;
approach is similar to that taken in [2] for cases without

B, N andL affect performance in a similar way as for cases
without mismatch, if3 is viewed as SNR.



r,=E{zd}. We can see that the difference in probability of

detection is very small in all cases. Through our study, we found
that the maximum error is typically observed for the maximum

value of I,4(for the covariance matrix ofd,z")" to be
positive definite,I',; must be less than this maximum value). In

a few cases, those with,; near its maximum value, the curves

are a bit farther apart. A case with the maximum error we found
in our study is shown in Fig. 4.

6. CONCLUSIONS

An analysis of the performance of the adaptive matched filter
algorithm has been provided for cases where the data used t
estimate the covariance matrix is not matched to the true
covariance matrix of the data to be tested. Closed form

expressions are given to estimate the probability of false alarm
and detection. The equations indicate that performance depends ' ‘ ‘ ' ' T

ona few critical parameters. These parameters happep tobethe  09r | = = o maxp o
eigenvalues of the covariance matrix of the observations after

the imperfect whitening that occurs due to the covariance matrix

mismatch, the signal-to-secondary-noise ratio, the observed
vector size and the number of reference samples used to form © f

the covariance matrix estimate.
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Fig. 3. Typical case whahandz are correlated.
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Fig. 4. Maximum error case wherandz are correlated.
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