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ABSTRACT sampling SOS based algorithms in a band-limited context.

Section 3 provides a decomposition of the global re-
sponse in terms of the emission filter and propagation chan-

. T nel responses with no approximation. This factorization

nel response, convolution of an emission filter and a prop- . . :
provides the structure used by the algorithms proposed in

agation channel. Th|s paper makes an e?<pI|C|t use of thISsection 4. The first algorithm assuming a total knowledge
channel structure in a second order algorithm. We present

" .~ of the emission filter is essentially similar to the multisen-
several structured methods exploiting more or less prior in- . i
. T sor algorithm proposed by Ding [8]. Then we present a fully
formations on the emission filter. Proofs of convergence are

provided, and simulations show that some knowledge basedbllnd structured subspace method. Finally we assume that

. . ) . : we have information on the emission filter shape, for in-
algorithms greatly improve over classical blind algorithms, . ; S

. . . stance a square-root Nyquist pulse (a classical situation in
even in the case where the knowledge is partial.

many HF systems). The algorithm only estimates its excess
bandwidth. Simulations in section 5 present performance
1. INTRODUCTION of these methods. In particular, they show that the second
proposed method, in which one makes use of the sole shape
Several recent works [1]-[3] have shown that non minimum of the filter performs almost as well as the knowledge based
phase impulse responses can be blindly estimated using seGnethod making full use of the filter.
ond order statistics only. These methods are based on a sin-
gle input and multiple outputs (SIMO) system model. Main
algorithms are the least square [1], the subspace [2] and the

linear prediction [3] methods. _ Let {s;,} denote the symbols emitted by the digital source
These algorithms identify the global impulse response \,ih symbol duratiorr”. The standard baseband representa-
i.e. the combination of the unknown propagation channel ;o ¢ the received signal ig(t) = Y0 seh(t—kT)+

and the transmitter/receiver filters. In classical digital trans- - .
o S b(t). The global impulse responéét) encompasses the ef-
mission systems the emission filter is in most cases known

by the receiver. Thus, it has been proposed recently to makefeCtS of a time-varying unknown propagation chare)

. . . and the composite response of transmitter filter, receiver fil-
use of this knowledge in order to estimate only the unknown ! . :
. ) . ter and modulation/demodulation (which are assumed to be
channel, with the intent to improve the performance. These . _ VPN . o
‘linear), denoted a&(t). b(t) is a stationary noise indepen-
methods are named structured or knowledge based or multl-dent of the channel inout
path channel identification methods [6]-[8]. The purpose of put.

. . ; . : The signal is received apsensors and fractionally sam-
this paper is to generalize this approach, and to introduce the X S . )
. . . pled with sampling interval\ = T'/p, thus formingp vir-
channel structure into algorithms, in order to take advantage :
tual channels on each sensor. Hence, after sampling the re-

of (even partial) knowledge on the emission filter. . . : . }

. ceived signal, we come up to the following discrete model:
The proposed algorithms are based on subspace tech-j(mT) =y hilto +mT — KT + (j — 1) Z)sp +

niques and use both spatial and temporal diversity. The usey;ﬁ T Ah=moo T v o J p/7k

of both diversities is seen to be necessary in order to avoid?; (WT) wherei =0...q - 1.|nd|cates the sensor number

the most frequent cases of non identifiability [4]-[5]. Itis @ndj =0...p— 1the sampling epoch. _

shown below that oversampling is necessary for obtaining ~ The problem, now, is to derive a discrete model of this

an accurate system model, while the spatial diversity is nec-Signal in which the effects of the physical channel would be

essary for obtaining more robustness than plain fractionally Separated from those of the system (filters, modulation,...).
The solution heavily relies on the following assumption:

Most second order Single Input Multiple Output (SIMO)
identification algorithms identify the global impulse chan-
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H 1 7(t) is a low-pass band-limited filter with bandwidth

1+«
. (1)

In practicei(t) may be a (square-root) raised-cosine pulse
with roll-off factor a.

B = 0<a<l1

<

3. MODELIZATION

This section intends to provide a discrete-time version (
transform) ofh(t) involving the z-transforms offi(t) and

¢(t). Would all quantities be frequency limited, the solu-
tion would be straightforward. Here, the difficulty is that

the classical model for the propagation channel is a sum of

several discrete path&t) = Zle apd(t — 1), thené(t),
which is band-illimited. Thus, the true channel cannot be
recovered from its samples. The solution involves the use
of the band-limitedness of the composite filter &(¢) to
define az-transform to the propagation channel and a fac-
torization relationship.

The corresponding factorization was used in previous
papers on partial knowledge information systems [6]-[8].

Cp(f) = P(f)C(f) is a band-limited filter defined in such
awaythaCTP(eﬂ”f)H (f) = C(H)T.(f). P(f) allows

to limit the bandW|dth ofC(f). By doing so, one is able to
define thez-transform ofé(¢) while keeping the shape of
C(f) inside the bands of the emission filter. Eq. 3 ensures
there is no aliasing inside the bafl Note thatP(f) is

not uniquely defined, neither'r ,(e/27/). This is due to
the assumption that the specftrum of the shaping filters is
strictly zero outside its bandwidth, and indicates that one
can estimate the channel only in a bandwidth where it is
observed. Thus,

Hz (e”™NIIa(f) = Nz (ej%f)f[a(f)cp (e7) (4)
h(t) =302 o Yre o il E)ep (kD) 7o (t — 15 — kL)
Hence, withH £ (2) = >_,7_ h(mL)z=™ we obtain the

relation below between the correspondinransforms of
the impulse responses of the filters, sampled at%ate

Nz (2)Cpz(2) (5)

However, we show that using this approach, the channel re-

sponse is not uniquely defined, and that the factorization is
not an approximation for band limited filters.

3.1. Notations

Assume that the oversampling facjois greater than two.
Let g(¢t) a continuous-time filter, ang« (¢) the filter re-
constructed from its samples %t We dpenote respectively
G(f) andG = (e727/) their Fourier transforms. Moreover,
we denote? ; (z) thez-transform of the filter sampled with
period% anJG’“(z) the k*" polyphase component.

(2) >0 G(to + k)27
(2 Y o Glto +iT +kT)z™

G
G

z

)

TN

(k=0.p—1)

3.2. Factorization and polyphase decomposition
Under H.1, by sampling(t) = 7 « &(t) with periodZ one
do not introduce aliasing. Thus,

I.(f) N(f)

o (f) H(f)=N()C(f)

wherell,, (f) is an ideal filter, limiting the bandwidth to that
of 7i(t) i.e. it is zero for frequencies larger tha#® and

N
H

(e77)
(e77)

SR

constant below. LeP(f) be a continuous filter verifying
~ 1 + @
P(f) = 1 |fl< )
P = 0 |f|>”é1 NG
N - T 2T

In order to simplify the notations, from now we will
omit the reference to the filteP(f) when considering the
propagation channettransforms.

Second order blind identification algorithms work on
stationary discrete signalsi.e. sampled at symbol rate. Hence,
we introduce the polyphase decomposition:

ZH" (zP)z

When applying similar polyphase decompositions to all fil-
ters in eq.(5) and identifying terms of same powet it is
easily seen that

p—1
= Z N (k=m) (2)
m=0

(6)

C™(z)  k=0...(p—1)

4. ALGORITHMS

By taking ¢ sensors, each one oversampled by a fagtor
we obtainp.q virtual channels, each one characterized by
its discrete valued response. Define

H(z) [H(2) Hy(2) ... HY ' (2) ... H}~{ (2)]"
C(z) = [C3(2)Ci(2)...Cf *(2).. C” ()"
N(z) [N°(2) Nl( ). NPT

where H (z) refers to the(i, j) virtual channel:j*" sam-
pling moment on thet* sensor. Note that the transmit-
ter/receiver filteri(t) does not depend on the sensor.



Classical SIMO second order based algorithms allows to Then, by applying the previous lemma to each component
identify a FIR filter of ordell precisely known verifyingthe  of eq. 8, we obtain the following expression
identifiability conditionH(z) # 0Vz. Thus,H(z), C(z) )
andN(z) being lIR filter because of their band-limited prop- _ = TS
erty, they are strictly unidenfiable by methods relying only h= Z (Ip.g @ To (N™)")e
on second order statistics. Denote respectiel\l,,, L, = m==(p-1)
Lc + Ly, the orders of the "significant” part @(2), N(2),  Note thatC?(2) = C(z) and that non zero polynomial com-
H(z). We keep the same notations to represent filters lim- ponents of the vectd®™ (=) are all components dE°(2).
|'Fed to the significant part. From now we only dgal W't.h 'FIR Thus,c™ = (I, ® P™ 1, ;1 )c whereP™ are null ma-
filters, and we assume that the truncated part is sufficiently, . . tho

trixes with ones on thex'"* diagonal.

small, so that the factorization relation (5) still holds. : . ! . o
Hence, matrix manipulations give the factorization:

4.1. Classical subspace method h=MNc 9
Leth = [1§(0)...PA(L) .. G (0). L (Lu)]” be  wheren =0t (1, @ Py o Ty, (V7))

the vector constructed frofH(z) coefficients. We recall The quadratic form may then be rewritten as

that the quadratic estimation criterion of the subspace method

is ¢(h) = hQh whereQ is entirely defined by the null q(c) = cENHEQNe (10)

subspace of the covariance matrix of the receive signal.

It had been shown [2] that under a constraint such that !t is easily seen that iH(z) # 0Vz by minimizingg(c) in
||h|| # 0, if the quadratic form is constructed from the true @ way thatf|c|| # 0, we estimatec up to a multiplicative
covariance matrix, the true impu|se response is the uniqueCOﬂStal’lt. The theorem 1 below provides an other identifia-

vector up to a multiplicative constant verifyiggh) = 0. bility sufficient condition depending only of the propagation
channel. First, we need to introduce a lemma.

We denotéCr (2) = [Cz o(2)...Cz , ,(2)]" thelz-
transform of the multisensors propaggtion channel.
The subspace method is now derived under assumption that _
the shaping filter is known. i.e. we are searching for an Lemma 2 LetH(z) the irreducible factor oH(z).
estimate of the sole propagation channel. If Cz(2) # 0V2, H(2) = r(2)H(2) iff N(2) = r(2)N(2).
The model explained in section 3 allows us to factorize
h in function ofc and a matrix depending only AN = (z) Theorem 1 In the noiseless case,(n‘% (z) has no common
coefficients. First, we present a lemma about a convolutionzero and ifN = (z) is not the null polynomialg(¢) = 0 iff
property.(Proof is omitted) ¢ =)\c. ’

4.2. Knowledge based subspace method

Lemma 1 LetV(z) andU(z) be M-vectorimpulse responses  Thys, if we know the emission filtd¥ (z) and the prop-
and X (z) a scalar impulse response of order respectively agation channeC(z) has no common roots, then we can
Ly, Ly and L. Letv andu be the vectors constructed by  jgentify it even if the global filteiH(z) has common roots.
stacking the coefficients 8 (z) andU(z). This is due to the fact that, woul(z) have common roots

AssuméV/(z) = X (2)U(z) thenv = (Iy®7z, (X)")u  these would also be roots dé(z).

where ® is the Kronecker productT;,, (X) is the classic

Toeplitz filtering matrix of dimensioii,, + 1) x (L + Ly + 1) .
; . ; " ) 4.3. Blind str r meth

associated to¥ (z) andI,, is the identity matriX M x M). 8 d structured subspace method

. . : . Eq.(7) can be processed to obthin= Cn with
We recall the decomposition obtained in section 3 a.(7) P -

p—1
p—1
_ ) ( v 0<i<po1 C= (P} @ T2, (CF") .. (P} © Tp, (C)))]
i) = mz::oN(J )(Z)Ci (2) ogggqpfl (7) m—X(;v—l) ’ 0 ' B
By laving downCt (+) — 0if ¢ ¢ 10.p—11 andC™ (+) — It is thus easily recognized that the problem is symmetric:
[C—my(z)y gc@—l)—l“gz) g(l[)—lz))_m](z)]T the(z)qua would the channel be known, the method allows to identify
0 Ll Z) e (qfl) 1 3

the emission filter. This section thus proposes an iterative
algorithm estiming blindly both filters. The fact that the
p—1 channel be multi-sensors whereas the emission filter is the
H(z) = Z N™(z)C™(2) (8) same on each sensor ensures that the algorithm converges to
m=—(p—1) the right solution in the noiseless case.

tion can be rewritten in a vector form as



Algorithm: iterationm + 1
o &pp1 = argming, = cN;, QN ke
o Ny = afgmiﬂ|n\\:1némQé£n

This algorithm minimizes the conjoint criterion

q(n,c) = cINIQNC (11)

with the constraint§n|| = 1 and||c|| = 1. —

known channel

classical subspace

structured subspace

emission filter knowledge based structured subspace
emission filter shape knowledge based structured subspace

The theorem 2 provides sufficient conditions for crite-
rion 11 to have the true filters as unique global minimum.

5 10 15
SNR(dB)

Figure 1:7 = (0,0.6)T, a = (1,0.5), § = (0,20)°, N = 200

Theorem 2 In the noiseless case, €< (z) # 0 Vz and

N(z) # 0 Vz theng(n,¢) = 0 iff I(u,v) € C such as

n = pn andé = ve. o°

4.4. Emission filter shape knowledge based structured
subspace method

El
M
S

This last method uses a prior knowledge of the emission

filter shape, for instance a square roots raised-cosine pulse

known channel . J
classical subspace

structured subspace

emission filter knowledge based structured subspace
emission filter shape knowledge based structured subspace

and estimates the roll-off factaer. —
Algorithm: iterationm + 1 0

. ém+1 = argmir]‘CH:chN(&m)QN(dm)Hc Figure 2 .
(50, —20, —80,

® Qpy1 = argminle[o’l]n(a)HémQégn(a)

The criterion is not a quadratic function of the roll-off
factor. However with only one unknown parameter some

4 6 8 12 14 16 18 20

10
SNR(dB)

= (0,0.25,1.19,2.4)T, a = (1,0.2,0.4,0.9), 0 =
10), N = 500
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