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ABSTRACT

Most second order Single Input Multiple Output (SIMO)
identification algorithms identify the global impulse chan-
nel response, convolution of an emission filter and a prop-
agation channel. This paper makes an explicit use of this
channel structure in a second order algorithm. We present
several structured methods exploiting more or less prior in-
formations on the emission filter. Proofs of convergence are
provided, and simulations show that some knowledge based
algorithms greatly improve over classical blind algorithms,
even in the case where the knowledge is partial.

1. INTRODUCTION

Several recent works [1]-[3] have shown that non minimum
phase impulse responses can be blindly estimated using sec-
ond order statistics only. These methods are based on a sin-
gle input and multiple outputs (SIMO) system model. Main
algorithms are the least square [1], the subspace [2] and the
linear prediction [3] methods.

These algorithms identify the global impulse response
i.e. the combination of the unknown propagation channel
and the transmitter/receiver filters. In classical digital trans-
mission systems the emission filter is in most cases known
by the receiver. Thus, it has been proposed recently to make
use of this knowledge in order to estimate only the unknown
channel, with the intent to improve the performance. These
methods are named structured or knowledge based or multi-
path channel identification methods [6]-[8]. The purpose of
this paper is to generalize this approach, and to introduce the
channel structure into algorithms, in order to take advantage
of (even partial) knowledge on the emission filter.

The proposed algorithms are based on subspace tech-
niques and use both spatial and temporal diversity. The use
of both diversities is seen to be necessary in order to avoid
the most frequent cases of non identifiability [4]-[5]. It is
shown below that oversampling is necessary for obtaining
an accurate system model, while the spatial diversity is nec-
essary for obtaining more robustness than plain fractionally
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sampling SOS based algorithms in a band-limited context.
Section 3 provides a decomposition of the global re-

sponse in terms of the emission filter and propagation chan-
nel responses with no approximation. This factorization
provides the structure used by the algorithms proposed in
section 4. The first algorithm assuming a total knowledge
of the emission filter is essentially similar to the multisen-
sor algorithm proposed by Ding [8]. Then we present a fully
blind structured subspace method. Finally we assume that
we have information on the emission filter shape, for in-
stance a square-root Nyquist pulse (a classical situation in
many HF systems). The algorithm only estimates its excess
bandwidth. Simulations in section 5 present performance
of these methods. In particular, they show that the second
proposed method, in which one makes use of the sole shape
of the filter performs almost as well as the knowledge based
method making full use of the filter.

2. THE SITUATION OF INTEREST

Let fskg denote the symbols emitted by the digital source
with symbol durationT . The standard baseband representa-
tion of the received signal is~y(t) =

P1
k=�1 sk~h(t�kT )+

~b(t). The global impulse response~h(t) encompasses the ef-
fects of a time-varying unknown propagation channel~c(t)
and the composite response of transmitter filter, receiver fil-
ter and modulation/demodulation (which are assumed to be
linear), denoted as~n(t). ~b(t) is a stationary noise indepen-
dent of the channel input.

The signal is received onq sensors and fractionally sam-
pled with sampling interval� = T=p, thus formingp vir-
tual channels on each sensor. Hence, after sampling the re-
ceived signal, we come up to the following discrete model:
yji (mT ) =

P1
k=�1

~hi(t0 + mT � kT + (j � 1)T
p
)sk +

bji (mT ) wherei = 0 : : : q � 1 indicates the sensor number
andj = 0 : : : p� 1 the sampling epoch.

The problem, now, is to derive a discrete model of this
signal in which the effects of the physical channel would be
separated from those of the system (filters, modulation,...).
The solution heavily relies on the following assumption:



H 1 ~n(t) is a low-pass band-limited filter with bandwidth

B =
1 + �

T
0 � � � 1 (1)

In practice,~n(t) may be a (square-root) raised-cosine pulse
with roll-off factor�.

3. MODELIZATION

This section intends to provide a discrete-time version (z-
transform) of~h(t) involving thez-transforms of~n(t) and
~c(t). Would all quantities be frequency limited, the solu-
tion would be straightforward. Here, the difficulty is that
the classical model for the propagation channel is a sum of
several discrete paths,~c(t) =

PP
p=1 �p�(t� �p), then~c(t),

which is band-illimited. Thus, the true channel cannot be
recovered from its samples. The solution involves the use
of the band-limitedness of the composite filter~n � ~c(t) to
define az-transform to the propagation channel and a fac-
torization relationship.

The corresponding factorization was used in previous
papers on partial knowledge information systems [6]-[8].
However, we show that using this approach, the channel re-
sponse is not uniquely defined, and that the factorization is
not an approximation for band limited filters.

3.1. Notations

Assume that the oversampling factorp is greater than two.
Let ~g(t) a continuous-time filter, andgT

p
(t) the filter re-

constructed from its samples atT
p

. We denote respectively
~G(f) andGT

p
(ej2�f ) their Fourier transforms. Moreover,

we denoteGT
p
(z) thez-transform of the filter sampled with

periodT
p

andGk(z) thekth polyphase component.

GT
p
(z) =

P1
k=�1 ~g(t0 + k T

p
)z�k

Gk(z) =
P1

i=�1 ~g(t0 + iT + k T
p
)z�i (k = 0::p� 1)

3.2. Factorization and polyphase decomposition

Under H.1, by sampling~h(t) = ~n � ~c(t) with periodT
p

one
do not introduce aliasing. Thus,

NT
p
(ej2�f )~��(f) = ~N(f)

HT
p
(ej2�f )~��(f) = ~H(f) = ~N(f) ~C(f)

where~��(f) is an ideal filter, limiting the bandwidth to that
of ~n(t) i.e. it is zero for frequencies larger than1+�

T
and

constant below. Let~P (f) be a continuous filter verifying

~P (f) = 1 jf j �
1 + �

2T
(2)

~P (f) = 0 jf j �
p� 1

T
+

1� �

2T
(3)

~CP (f) = ~P (f) ~C(f) is a band-limited filter defined in such
a way thatCT

p
P (e

j2�f )~��(f) = ~C(f)~��(f). ~P (f) allows

to limit the bandwidth of~C(f). By doing so, one is able to
define thez-transform of~c(t) while keeping the shape of
~C(f) inside the bandB of the emission filter. Eq. 3 ensures
there is no aliasing inside the bandB. Note that ~P (f) is
not uniquely defined, neitherCT

p
P (e

j2�f ). This is due to
the assumption that the spectrum of the shaping filters is
strictly zero outside its bandwidth, and indicates that one
can estimate the channel only in a bandwidth where it is
observed. Thus,

HT
p
(ej2�f )~��(f) = NT

p
(ej2�f )~��(f)CT

p
P (e

j2�f ) (4)

~h(t) =
P1

l=�1

P1
k=�1 ~n(l T

p
)~cP (k

T
p
)~��(t� l T2 � k T

p
)

Hence, withH T
P
(z) =

P1
m=�1

~h(mT
p
)z�m we obtain the

relation below between the correspondingz-transforms of
the impulse responses of the filters, sampled at rateT

p
.

HT
p
(z) = NT

p
(z)CP T

p
(z) (5)

In order to simplify the notations, from now we will
omit the reference to the filter~P (f) when considering the
propagation channelz-transforms.

Second order blind identification algorithms work on
stationary discrete signals i.e. sampled at symbol rate. Hence,
we introduce the polyphase decomposition:

HT
p
(z) =

p�1X

k=0

Hk(zp)z�k (6)

When applying similar polyphase decompositions to all fil-
ters in eq.(5) and identifying terms of same power inz, it is
easily seen that

Hk(z) =

p�1X

m=0

N (k�m)(z)Cm(z) k = 0 : : : (p� 1)

4. ALGORITHMS

By taking q sensors, each one oversampled by a factorp,
we obtainp:q virtual channels, each one characterized by
its discrete valued response. Define

H(z) = [H0
0 (z) H

1
0 (z) : : :H

p�1
0 (z) : : : Hp�1

q�1 (z)]
T

C(z) = [C0
0 (z) C

1
0 (z) : : : C

p�1
0 (z) : : : Cp�1

q�1 (z)]
T

N(z) = [N0(z) N1(z) : : :Np�1(z)]T

whereHj
i (z) refers to the(i; j) virtual channel:jth sam-

pling moment on theith sensor. Note that the transmit-
ter/receiver filter~n(t) does not depend on the sensor.



Classical SIMO second order based algorithms allows to
identify a FIR filter of orderL precisely known verifying the
identifiability conditionH(z) 6= 08z. Thus,H(z), C(z)
andN(z) being IIR filter because of their band-limited prop-
erty, they are strictly unidenfiable by methods relying only
on second order statistics. Denote respectivelyLc,Ln,Lh =
Lc +Ln the orders of the “significant” part ofC(z),N(z),
H(z). We keep the same notations to represent filters lim-
ited to the significant part. From now we only deal with FIR
filters, and we assume that the truncated part is sufficiently
small, so that the factorization relation (5) still holds.

4.1. Classical subspace method

Let h = [h00(0) : : : h
1
0(Lh) : : : h

p�1
0 (0) : : : hp�1

q�1(Lh)]
T be

the vector constructed fromH(z) coefficients. We recall
that the quadratic estimation criterion of the subspace method
is q(h) = hHQh whereQ is entirely defined by the null
subspace of the covariance matrix of the receive signal.

It had been shown [2] that under a constraint such that
jjhjj 6= 0, if the quadratic form is constructed from the true
covariance matrix, the true impulse response is the unique
vector up to a multiplicative constant verifyingq(h) = 0.

4.2. Knowledge based subspace method

The subspace method is now derived under assumption that
the shaping filter is known. i.e. we are searching for an
estimate of the sole propagation channel.

The model explained in section 3 allows us to factorize
h in function ofc and a matrix depending only onNT

p
(z)

coefficients. First, we present a lemma about a convolution
property.(Proof is omitted)

Lemma 1 LetV(z) andU(z) be M-vector impulse responses
andX(z) a scalar impulse response of order respectively
Lv, Lu andLx. Letv andu be the vectors constructed by
stacking the coefficients ofV(z) andU(z).

AssumeV(z) = X(z)U(z) thenv = (IM
TLu(X)T )u
where
 is the Kronecker product,TLu(X) is the classic
Toeplitz filtering matrix of dimension(Lu + 1)� (Lx + Lu + 1)
associated toX(z) andIM is the identity matrix(M�M).

We recall the decomposition obtained in section 3

Hj
i (z) =

p�1X

m=0

N (j�m)(z)Cm
i (z) 0 � j � p � 1

0 � i � q � 1 (7)

By laying downCt
i (z) = 0 if t =2 [0::p�1] andCm(z) =

[C�m0 (z) : : : C
(p�1)�m
0 (z) : : : : : : C

(p�1)�m
(q�1) (z)]T , the equa-

tion can be rewritten in a vector form as

H(z) =

p�1X

m=�(p�1)

Nm(z)Cm(z) (8)

Then, by applying the previous lemma to each component
of eq. 8, we obtain the following expression

h =

p�1X

m=�(p�1)

(Ip:q 
 TLc(N
m)T )cm

Note thatC0(z) = C(z) and that non zero polynomial com-
ponents of the vectorCm(z) are all components ofC0(z).
Thus,cm = (Iq 
 Pm

p 
 ILc+1)c wherePm
p are null ma-

trixes with ones on themth diagonal.
Hence, matrix manipulations give the factorization:

h = Nc (9)

whereN =
Pp�1

m=�(p�1)(Iq 
P
m
p 
 TLc(N

m)T )
The quadratic form may then be rewritten as

q(c) = cHNHQNc (10)

It is easily seen that ifH(z) 6= 08z by minimizingq(c) in
a way thatkck 6= 0, we estimatec up to a multiplicative
constant. The theorem 1 below provides an other identifia-
bility sufficient condition depending only of the propagation
channel. First, we need to introduce a lemma.

We denoteCT
p
(z) = [CT

p
;0(z) : : : CT

p
;q�1(z)]

T theT
p
z-

transform of the multisensors propagation channel.

Lemma 2 Let ~H(z) the irreducible factor ofH(z).
If CT

p
(z) 6= 08z,H(z) = r(z) ~H(z) iff N(z) = r(z) ~N(z).

Theorem 1 In the noiseless case, ifCT
p
(z) has no common

zero and ifNT
p
(z) is not the null polynomial,q(ĉ) = 0 iff

ĉ = �c.

Thus, if we know the emission filterN(z) and the prop-
agation channelC(z) has no common roots, then we can
identify it even if the global filterH(z) has common roots.
This is due to the fact that, wouldH(z) have common roots
these would also be roots ofN(z).

4.3. Blind structured subspace method

Eq.(7) can be processed to obtainh = Cn with

C =

p�1X

m=�(p�1)

[(Pm
p 
 TLn(C

m
0 )) : : : (Pm

p 
 TLn(C
m
q�1))]

It is thus easily recognized that the problem is symmetric:
would the channel be known, the method allows to identify
the emission filter. This section thus proposes an iterative
algorithm estiming blindly both filters. The fact that the
channel be multi-sensors whereas the emission filter is the
same on each sensor ensures that the algorithm converges to
the right solution in the noiseless case.



Algorithm: iterationm+ 1

� ĉm+1 = argminkck=1cN̂mQN̂ T
mc

� n̂m+1 = argminjjnjj=1nĈmQĈ
T
mn

This algorithm minimizes the conjoint criterion

q(n; c) = cHNHQNc (11)

with the constraintsjjnjj = 1 andjjcjj = 1.
The theorem 2 provides sufficient conditions for crite-

rion 11 to have the true filters as unique global minimum.

Theorem 2 In the noiseless case, ifCT
p
(z) 6= 0 8z and

N(z) 6= 0 8z thenq(n̂; ĉ) = 0 iff 9(�; �) 2 C such as
n̂ = �n andĉ = �c.

4.4. Emission filter shape knowledge based structured
subspace method

This last method uses a prior knowledge of the emission
filter shape, for instance a square roots raised-cosine pulse
and estimates the roll-off factor�.

Algorithm: iterationm+ 1

� ĉm+1 = argminkck=1c
HN (�̂m)QN (�̂m)

Hc

� �̂m+1 = argmin�2[0;1]n(�)
H ĈmQĈHmn(�)

The criterion is not a quadratic function of the roll-off
factor. However with only one unknown parameter some
algorithms can find the global minimum. Identifiability con-
ditions given in theorem 2 are still sufficient.

5. SIMULATIONS

This section compares performances of the four algorithms
presented in this paper.

The emitted symbols are i.i.d.8PSK. Emission filter is
a square-root raised-cosine pulse with roll-off0:25. Prop-
agation splits the channel into P paths, characterized by an
angle of incidence�p, a delay�p and an attenuation factor
ap. The signal is received on two sensors. We use the linear
equalizer matrix� = (TW (Ĥ)HTW (Ĥ))�1TW (Ĥ)H . The
simulations give the symbol error rate between the emitted
symbols and the equalized signal. In each trial,N symbols
are used for the identification.

First, simulations show as in [6]-[8] that the knowledge
of the emission filter allows to significantly outperform clas-
sical blind algorithms. But, moreover we can see that know-
ing the sole shape of the filter we obtain almost the same
performance. These (total or partial) knowledge based meth-
ods perfor much better than fully blind algorith, all these
being almost equivalent, structured or not.
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Figure 1:� = (0; 0:6)T , a = (1; 0:5), � = (0; 20)�, N = 200
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Figure 2: � = (0; 0:25; 1:19; 2:4)T , a = (1; 0:2; 0:4; 0:9), � =
(50;�20;�80; 10), N = 500
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