
ABSTRACT

Blind clustering of multi-person utterances by speaker
is complicated by the fact that each utterance has at least two
talkers. In the case of a two-person conversation, one can
simply split each conversation into its respective speaker
halves, but this introduces error which ultimately hurts
clustering. We propose a clustering algorithm which is
capable of associating each conversation with two clusters
(and therefore two-speakers) obviating the need for splitting.
Results are given for two speaker conversations culled from
the Switchboard corpus, and comparisons are made to
results obtained on single-speaker utterances. We conclude
that although the approach is promising, our technique for
computing inter-conversation similarities prior to clustering
needs improvement.

1. INTRODUCTION

In [1], we described approaches to blind clustering of
speech utterances based on speaker and language
characteristics. For speaker attribute clustering, it was
assumed that a single speaker was speaking in each utterance
and so exhaustive, exclusive clustering, where each message
was placed in one and only one cluster, was allowable.
However, in the more general case, recorded messages, such
as from meetings, will contain speech from more than one
speaker so that non-exclusive clustering, where a message
can be placed in more than one cluster, is required.

One way to treat this problem is to attempt to segment
each conversation into single-speaker utterances as done in
[2]. Any one of a number of clustering algorithms can then
be applied. This split-then-cluster approach was employed
here on two-speaker telephone speech from the Switchboard
corpus, and the result (see Table 1) serves as our baseline.

*THIS WORK WAS SPONSORED BY THE
DEPARTMENT OF THE AIR FORCE. INTERPRETA-
TIONS, CONCLUSIONS, AND RECOMMENDATIONS
ARE THOSE OF THE AUTHORS AND ARE NOT NEC-
ESSARILY ENDORSED BY THE UNITED STATES AIR
FORCE.

The conversation splitting was achieved by agglomerating
one-second segments into two clusters based upon scores for
each segment against models for every other segment.
Follow-on clustering was done using the d* algorithm [1].

Because the splitting operation is imperfect, subsequent
clustering results in more errors than when conversations are
split using truth markings when such markings are available.
Experiments performed here at Lincoln Laboratory verify
this (see again Table 1).

Here, we propose a clustering technique which is
capable of placing each conversation into exactly two
clusters, obviating the need for speaker splitting and its
inherent error. This clustering method, adapted from the
widely known agglomerative clustering algorithm, operates
on an inter-conversation similarity matrix computed using
log likelihood scores output from a Gaussian mixture model
(GMM) speaker identification system.

In the following section, we describe this similarity
computation prior to describing our two-speaker
agglomerative clustering algorithm in section three. Our
agglomerative algorithm produces a tree structure, as does
the standard agglomerative, and this tree must be cut to
produce clusters. To assess the goodness of our cut, we use
a modification of the BBN metric described in [3]. This
modification and our results comprise the final sections.

2. SIMILARITY MATRIX COMPUTATION

For two-speaker conversation clustering, we would like
our similarity metric to have the property that conversations
with a common speaker will have high similarity and
conversations with no common speaker will have low
similarity. Our similarity metric is based upon our GMM
speaker identification system [4]. In this case, we wish to
compute a similarity between every pair of conversations.
We proceed by forming a 2048-mixture GMM (using
cepstral and delta-cepstral features) for each conversation.
This GMM is adapted from a universal background model
(UBM) as described in [5]. Both speakers in the
conversation are modeled using this single GMM.

AUTOMATIC SPEAKER CLUSTERING FROM MULTI-SPEAKER
UTTERANCES*

Jack McLaughlin, Douglas Reynolds, Elliot Singer and Gerald C. O’Leary
MIT Lincoln Laboratory

Lexington, MA 02420-9185
jackm | dar | es | gco @sst.ll.mit.edu

The similarity between two conversations A and B is
obtained by computing the likelihood of each one-second
segment of conversation B scored against the model for
conversation Aand the UBM, and then forming a likelihood
ratio. The final similarity is the sum of all segments above a
certain threshold. This threshold, which we set to zero,
allows us to reject all segments of B which have no speaker
in common with the two speakers in A.

Note that in this procedure, there is no normalization for
the duration of each speaker’s speech in a conversation.
Though such normalization may be desirable, it has a
downside. The use of the threshold to reject segments that
have no common speaker is prone to error and even though
several segments might contribute to the final similarity, it
may still be that in fact, there is no common speaker. If we
were to normalize by, say, the number of contributing
segments, we would lose this information. In failing to
normalize, we indirectly preserve information about the
number of segments that contributed to the sum.

3. AGGLOMERATIVE CLUSTERING

Tree Formation
Agglomerative clustering (see, for example, [6]) is a

proven technique for blind clustering [1][3]. With the
standard algorithm, all items to be grouped are initially
considered as being in their own clusters. (All items are
singletons.) A distance (or similarity) exists between each
item and every other. With each iteration, the two items
which are most similar are merged to form ever larger non-
singleton clusters. Upon the merging of two clusters, the
need arises to compute a distance (or similarity) between the
new cluster and every other item. There are a number of
reasonable options, but we choose to define the similarity
between two clusters as equal to the similarity between the
least similar conversations in those clusters. Agglomeration
of clusters continues until there is only a single large cluster
remaining. We wish to adapt this approach for the multi-
speaker case.

Initialization
In clustering of two-speaker conversations, we do not

wish to cluster the conversations themselves so much as we
wish to cluster the speakers in those conversations. Since we
assume that each conversation has two speakers, the initial
number of clusters is equal to twice the number of
conversations with each conversation belonging to two
unique clusters. However, similarities exist only between
every pair of conversations, not every pair of speakers. This
situation is illustrated in Figure 1. We do not wish to split
our conversations to obtain inter-speaker similarities, nor do
we wish to drastically alter the agglomerative algorithm if it
can be avoided. We need do neither if we simply set all
possible inter-speaker similarities between speakers in two
conversations equal to the similarity between the two
conversations, so this is the approach we take.

Agglomeration
With our multi-speaker agglomerative algorithm, we

cannot allow agglomeration to proceed without constraints
as it does in the standard algorithm. During the
agglomeration process, we seek to enforce two rules: (1)
each conversation must be placed in exactly two clusters and
(2) no two conversations can have the same two speakers (no
“repeat” conversations). The latter rule embodies a feature
of our database that we take advantage of. Both rules can be
adhered to by simply keeping track of clusters which we will
not allow to merge. Conceptually, we can think of the
similarity between such clusters as being zero, and therefore,
the algorithm will never select them for merging.

With the initialization as described and the above rules
in place, we agglomerate. Note that because not all merges
are allowed, the tree that results from this two-speaker
agglomerative algorithm will never produce a single root
when it completes.

Tree Cutting
To produce clusters from a tree, the tree must be cut.

Since each tree node represents a cluster of conversations,
tree cutting is nothing more than the selection of a set of
nodes. Our process for this selection, which we call “level
cutting,” involves horizontal cuts of the tree where the
selected nodes are all the nodes immediately below the cut.
(Leaves, here, are at the bottom of the tree, and the root is at
the top.) Of course, we must perform the cutting without the
benefit of knowing truth (which speakers are involved in
which conversations).

Assessing Cuts
To choose the nodes which will serve as clusters we

employ the BBN Metric defined in [3] as:

(1)

Here,ni is the number of conversations in clusteri, Nc is the
total number of clusters andQ is a factor that can bias the
tree cutting towards a small number of large clusters (by
using a largeQ) or towards a large number of small clusters

A B
d A1

A2

B1

B2

d1

d4

d2
d3

Figure 1: Similarities are computed only between con-
versations as shown at left. We initialize our algorithm
with similarities between all pairs of speakers (two for
each conversation) by setting d1 = d2 = d3 = d4 = d, as
shown at right.

I BBN ni pi QNc–
i 1=

Nc

∑=

(by using a smallQ). We useQ = 0.5. The factorpi, the
purity of clusteri, captures the homogeneity of that cluster.
If all conversations in the cluster involve the same speaker,
then the purity is one.

To make the cut, we computeIBBN for all sets of nodes
(all possible level cuts), and then choose the set with the
largest BBN value.

Estimating Purity
In a fair blind clustering exercise, we do not know the

speakers in each of our conversations, and so we cannot
know the true purity of clusters. To cut the tree, we must
therefore estimate purity.

One such estimator, thenearest neighbor estimator, was
proposed in [3]. To calculate purity for a cluster using this
approach, we compute anutterance purity for every
conversation in the cluster. If the number of conversations in
the cluster of interest isni, then the utterance purity is that
fraction of the conversation’s nearest neighbors (as
determined using the similarity measure) which are included
among theni. Cluster purity is then the average of all the
utterance purities.

For our two-speaker application, a small modification
must be made to this procedure. Since each conversation
contains two speakers A and B, then if our similarity
measure is at all accurate, each conversation will have some
near neighbors due to its A half and some near neighbors due
to its B half. This situation is illustrated in Figure 2. When
counting nearest neighbors for conversationx in cluster A,
we must exclude from our counting any conversations that
are near tox but located in B. Including such conversations
improperly lowers our purity estimate. Note that unlike the
nearest neighbor estimator for single-speaker data, our
estimator requires a complete set of candidate clusters since
we must have information about the “other half” of each
conversation. We cannot estimate purity of a single cluster
without knowledge of the other clusters.

4. APPLYING TRUTH

To evaluate the correctness of the clusters that arise
from our tree cut, we must have truth. This allows us to
calculate the true purity of each cluster and a “true” value for
IBBN. For convenience in comparing different clustering
results, we convert this value to what we call theclustering
efficiency.

True Purity
Knowing the true cluster memberships for each

conversation, we can define true purity as

(2)

wherenij is the number of conversations in clusteri that, in
truth, come from speakerj. The sum runs over all speakers
in the cluster. If all conversations come from the same
speaker, thennij = ni and the purity is one. This is discussed
in more detail in [3].

Implementing (2) is not entirely straightforward for the
two-speaker case. Each conversation can only be counted
once, however since each conversation has two speakers, we
cannot be sure if a particular conversation should be counted
due to its “speaker A” side or its “speaker B” side. In
practice, for each conversation we choose the speaker which
yields the largest value ofpi for that cluster. This “greedy”
approach tends to overstate somewhat the true purity and
hence the value of the BBN metric as well, but finding the
correct speaker half for each conversation in each cluster is
a difficult problem with no simple solution.

Clustering Efficiency
We would like to represent our value ofIBBN for a

particular clustering relative to the best and worst that we
could do. To achieve this, we calculate the clustering
efficiency (CE) from [1]:

(3)

Here,F is the value of the BBN metric for a full-search (all
singletons), andO is the BBN value for the optimum
clustering. F = N(1 - Q) andO = N - NcQ whereN is the
number of conversations.

5. RESULTS ON SWITCHBOARD SPEECH

To test this two-speaker agglomerative algorithm, 1101
two-minute conversations from all phases of the
Switchboard corpus were produced by summing the
conversation halves to create two-speaker conversations.
The total number of speakers over the 1101 conversations
was 505. No two speakers were involved in more than one

Speaker A Speaker B

x

x

Cluster Cluster

Figure 2: Conceptual illustration of conversations
grouped into 2 clusters. Conversationx has near neigh-
bors in both clusters. pi

nij

ni

----- 
 

2

j
∑=

CE
I BBN F–
O F–

--------------------=

conversation, and each conversation contained exactly two
speakers.

Table 1 shows results when employing the two-speaker
agglomerative clustering to the similarity matrix calculated
from these 1101 conversations. Also given are results using

d* [1]. Two different splitting methods were investigated:
splitting using truth marks provided with the database and
splitting using the automatic algorithm described in
Section 1. As mentioned previously, automatic splitting
hurts clustering efficiency, but automatic splitting followed
by d* clustering is still superior to two-speaker
agglomerative clustering on the similarity matrix.

In clustering the two-speaker conversations, two
operations were performed. First, a similarity matrix was
computed and then this was followed by the actual
clustering. It is important to be able to assess the degree to
which each of these parts is responsible for the low
clustering efficiency.

One way to judge the discriminating power of a set of
distances or similarities is by the detection error trade-off
(DET) curve — essentially a receiver operator characteristic.
Figure 3 shows a DET curve for our two-speaker similarities

calculated on the Switchboard 1101-conversation set and
another curve for 1369 single-speaker Switchboard
conversations. The DET curves show that the technique
used for computing the single-speaker distances gives us far
greater discrimination power than in the two-speaker case,
and not surprisingly, using d* we routinely achieve much
greater clustering efficiencies than we have with the two-
speaker agglomerative approach.

6. CONCLUSIONS

We have described and tested an approach to clustering
of two-speaker telephone conversations that does not require
splitting of each conversation into its respective speaker
halves. Though at present our result is not as good as when
we split and cluster, our clustering algorithm may not be
entirely to blame. We have shown that the method for
computing inter-conversation similarities lacks the
discriminating power of the analogous technique which we
apply in the case of single-speaker telephone data.

An obvious course for future work to take is toward a
better method to two-speaker similarity computation. We
noted previously that the present similarities are not
normalized for duration. Performing such a normalization,
though it has its drawbacks (as noted), may lead to improved
performance.

REFERENCES

[1] D. Reynolds, E. Singer, B. Carlson, G. O'Leary, J.
McLaughlin and M. Zissman, “Blind Clustering of
Speech Utterances Based on Speaker and Language
Characteristics,” Int. Conf. Spoken Language
Processing, 1998. To appear.

[2] L. Wilcox, F. Chen, D. Kimber and V. Balasubramania,
“Segmentation of Speech Using Speaker
Identification,”Proc. ICASSP, vol. 1, pp. 161-164, 1994.

[3] A. Solomonoff, A. Mielke, M. Schmidt and H. Gish,
“Clustering Speakers by Their Voices,”Proc. ICASSP,
vol. 2, pp. 757-760, May, 1998.

[4] D.A. Reynolds, “Speaker Identification and Verification
Using Gaussian Mixture Speaker Models,”Speech
Communication, vol. 17, pp. 91-108, August, 1995.

[5] D.A. Reynolds, “Comparison of Background
Normalization Methods for Text-Independent Speaker
Verification,” Eurospeech, Sept., 1997.

[6] J.A. Hartigan, Clustering Algorithms, Wiley, New
York, 1975.

Table 1: Clustering Results on Switchboard

Cluster
Method

Split
Method

No. of
Clusters

IBBN CE

d* Automatic 763 1587.9 0.58

d* True 1031 1644.0 0.65

2-speaker
agglom

No split 960 1430.2 0.39

0.1 0.2 0.5 1 2 5 10 20 40 60 80

0.1

0.2

0.5

 1

 2

 5

10

20

40

60

80

False Alarm probability (in %)

M
iss

 p
ro

ba
bi

lity
 (i

n
%

)

Single−speaker distances
Two−speaker similarities

Figure 3: DET curves for two-speaker similarities and
single-speaker distances. The single-speaker has a low-
er false alarm and miss rate at all thresholds, and there-
fore has much greater discriminating power.

