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ABSTRACT
Bit Source Chaotic
In recent years, a variety of communications systems based on {b[n]} —> Modulator
chaos and nonlinear dynamics have been proposed. However,
most of these algorithms fail to work under realistic channel lx[n]
conditions. This paper presents a channel equalization scheme Noise — Channel
for chaotic communication systems based on a family of
archetypal chaotic maps. The symbolic-dynamic representation *r[n]
of these maps is exploited to allow a straightforward and Received
efficient implementation. Equalizer filter coefficients are Equalizer, XE[nl Chaotic | . Bits
updated using appropriately modified versions of decision- Demodulatoy (B[N}
directed and decision-feedback egualization agorithms with
adaptation based on the NLM 'S algorithm. Figure 1. Block diagram for chaotic communication system.
1. INTRODUCTION additive noise. The goal of the equalizer is to undo the distortions

caused by the channel. While most modern equalizers rely on
their knowledge of the transmitted signal’'s waveform, either in
the form of a specific training signal or known signal structure
such as a constant modulus, this information is not available to
the equalizer of Figure 1. In this case the equalizer has
development of nonlinear communications techniques. Such ?nformation abou_t the dynamics of the transmitted signa_l but not
communications systems offer the promise of inherent security, its waveform. Flnally, the recovered chac_;tlc sequence is passed
gthrough a chaotic demodulator to obtain an estimate of the

resulting from the broadband and ‘noise-like’ appearance ot itted bit f th bolic d - f th
chaotic signals, and efficiency, since systems could be allowed to'2"SmMitted Dit sequence irom the Symbolic dynamics or the

operate in their natural nonlinear states. Even simple One_reconstructed signal.

dimensional maps can produce random-like yet deterministic Although there have been many algorithms proposed for
signals. A variety of approaches to chaotic communications haveysing chaotic signals for communications purposes, there remain
been proposed, including chaotic modulation, masking, andseveral basic issues that need to be addressed. First of all, almost
spread-spectrum [1,2,3,4]. Because we believe that the chaotigy| of these algorithms disregard channel effects or fail to work
modulation techniques show the most promise, they are the focuginder realistic channel conditions. There has been some research
of this research. into equalization algorithms, but these only compensate for very
simple distortions such as a constant gain [5]. There is also a
need to address the finite precision processing used in any digital

Chaos has received a great deal of attention in the past few years
from a variety of researchers, including mathematicians,
physicists, and engineers. Researchers in the area of signa
processing have largely been interested in chaos for the

A generic chaotic communications system based on chaotic

modulation is shown in Figure 1. In such a system the S der fixed poi ithmetic. chaoti
information bits to be transmitted must first be encoded in the COMmunications system. —Under fixed point arithmetic, chaotic

signal waveform generated by the chaotic system using what iSYStems are no longer chaotic and lose many of the properties
termedsymbolic dynamics. Rather than using structured signals, th_at make them attractive for communications purposes [7].
such as rectangular pulses or sinusoids, to denote ‘0's and ‘1’s,Fma”y' lack Of_ e_fﬁcnency _and speed_ IS a severe limitation for
these communications systems embed the information in the timdnany of the existing chaotic communications schemes.

eVOlUtion, or dynamiCS, of the transmitted Signal. Regions of the In this paper, we present a framework to address all of these
state space formed by the chaotic system's dynamics arémportant problems. The proposed equalization algorithm is able
designated to represent different symboils (i.e., sequences of ‘0'§o compensate for the effects of a fading dispersive channel with
and ‘1's). The process of mapping the information bits to the AWGN. Simple techniques are also proposed for chaotic
state of the chaotic system is termed chaotic modulation. Thismodulation and demodulation at the maximum possible
assignment of information bits to state should not be arbitrary, information rate. Additionally, alternative representations of the
and the greatest efficiency is achieved when the information proposed chaotic systems provide a means for implementation in
transmission rate matches the topological entropy of the chaotiginite precision arithmetic. Chaotic communications systems are
system [3]. Next, using an appropriate carrier, the chaotic often said to be secure because the transmitted signal has a
sequence is transmitted through the channel. The effect of theandom appearance with little further justification. Results
channel is to distort the transmitted sequence and corrupt it Withpresented here will provide some insight into when such systems
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Figure 2. Representation for sawtooth chaotic modulation and Figure 3. Two

demodulation through linear filtering.

are secure. Findly, it is shown that the proposed agorithms are
fast, accurate, and efficient.

Section 2 provides background information on the class of
chaotic systems that will be considered. Then, the chaotic
communications systems and equalization algorithms are
presented in Section 3. Simulations and results for the proposed
algorithms are given in Section 4.

2. BACKGROUND
In general, discrete-time chaotic signals are represented as
xn+1] = f(x{n]), €

where f(Qlis a nonlinear dynamical equation satisfying certain
properties such as a sensitivity to initial conditions. Once the
nonlinear dynamics, f (0], and an initial condition, X0], are
specified, it is straightforward to generate a chaotic sequence.
However, because of finite precision, for many chaotic maps, the
sequence degenerates after a few iterations and is not chaotic.
Two of the most popular one-dimensional chaotic maps, the
sawtooth and tent maps, are examples of this problem. For our
purposes, instead of generating the sequence directly, an
aternative symbolic-dynamic representation will be used. This
symbolic-dynamic representation not only is the key to efficient
chaotic modulation and demodulation but aso makes
equdization possible. In the remainder of this section, the
dynamical eguations for these two maps and their corresponding
symbolic-dynamic representations are given.

The sawtooth map is given by the following dynamical
equation

x[n+1] = f(x[n]) = 2K n] mod(1)
]

if x[n] <0.5 2
E]Z X[n] -1

if x[n] >05

Its symbolic-dynamic representation is found from the binary
representation of the chaotic signal

X[N] = 0byb 4D - where by, ={o1}
so that the sawtooth map is given by
X{n+1 = f (n]) = 0y 1204 2+ 3 )

More importantly, Drake and Williams [7] have shown that the
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different implementations for generating
indistinguishable chaotic sequences.
n
h[n] =2 u[-n-1], (4)
with corresponding transfer function
z/2
H(z) = . 4<2 (5)
1-2/2

o0
Thus, the output of the filter is given byn] = ‘ S bn—=K]h[K],
=—00

where the initial condition0], completely determines the
sequence b[n]

X[0] =0bgbiby...,  and

This linear filtering representation for the sawtooth map
provides a means for the chaotic modulation shown in Figure.
The input is the information bit sequence and the output is a
chaotic sequence. This implementation is illustrated in Figure 2.

bin+1=bp, for n>0,

The inverse filter for this chaotic modulator is a simple two-
tap FIR filter whose input is a sawtooth chaotic sequence and
output is a binary sequence. The transfer function for this inverse
filter is

H Yz = 1+2271 ©)

Thus, the chaotic demodulator of Figure 2 is just this inverse
filter.

To be able to represent the sawtooth chaotic map in terms of
linear filtering is especially important from a signal processing
point of view. With this representation, not only is the chaotic
system written in terms of an operation that is extremely familiar
to the signal processing community (i.e., convolution), but it
demonstrates that chaotic systems are not necessarily nonlinear
and may have a completely equivalent linear representation.
Other chaotic systems with linear representations are considered
in [8].

Consequently, a binary bit sequence can be used as the input
to the filter of Eq. (5) to get a chaotic data sequence. In practice
this is not a possible because this filter is noncausal and has an
infinite length. However, one need only to make reasonable
modifications for it to be realizable, i.e. make simplifications
such that the filter has finite-length and is causal. First, as the
filter coefficients decay very rapidly, the filter can be truncated.
Second, by shifting the resulting coefficients, we can make the

sawtooth map’s output is equivalent to the response of a lineaddiiter causal. The final filter impulse response will then be
filter to a binary sequence. The impulse response of this filter is

given by



0<n<N, @

Truncation results in a loss of precision and shifting the
coefficients results in delay, both of which are tolerable. Because
of these modifications, the output will approximate a chaotic
sequence within the limits of finite precision arithmetic. This
structure is shown in Figure 3. The bit sequence can then be
obtained from the chaotic signal by use of the inverse filter given
previoudy. Thus, the chaotic modulation and demodulation
problems are solved with very simple filtering operations for the
sawtooth map. This forward and inverse filtering representation
is the key for the proposed channel equalization algorithm.

A similar framework exists for another popular chaotic map,
the tent map, given by the dynamical equation

oo, e

The tent map also has a binary representation given by
f(x{n]) = f(0bnbyt1bps2--2)
B FPbnt1bntobnsez--- if bn =0 (g)
T bbbz, i by =1

« H ifb =0
where bk=§) i by, =1

Thus, this map may be implemented in a similar manner as the
sawtooth map with a simple nonlinearity added to the modulator

and demodul ator to account for by, .

Using these two popular one-dimensional chaotic maps, one
can generate more chaotic maps through oneto-one
transformations. For instance, the logistic map, which is another
popular chaotic map, can also be produced with this approach.
Additionally, by combining one-dimensional maps in different
forms, one can obtain higher dimension chaotic maps [8]. Thus,
one could easily map bit sequences to higher dimension chaotic
Sequences.

3. CHAOTIC COMMUNICATIONS
SYSTEM AND EQUALIZER

At this point, it should be clear how chaotic modulation and
demodulation are peformed. To implement chaotic
demodulation, i.e. to invert the symbolic dynamics, one needs
ideally to have the origina transmitted chaotic sequence. As
mentioned earlier, because of the channel effects, the received
chaotic sequence will be distorted. Therefore, an equalizer is
needed to recover the transmitted chaotic sequence such that the
demodulator gives the correct bit sequence. This section looks at
the equalizer component of the block diagram. For
simplification, a discrete-time representation will be used and the
sawtooth map is assumed.

The equalizer and chaotic demodulator are shown in detail
in Figure 4. In this block diagram, r[n] represents the output of

bn
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Figure 4. Channel equalizer for the sawtooth chaotic map.

H(2)

the channel, which is a distorted chaotic sequence, and the
equalizer is an adaptive FIR filter. The output of this equalizer,
denoted by xJn], is the restored transmitted chaotic sequence.
Then, xJn] is passed through the inverse filter, H[Z], given in
Section 2 and thresholded by

[0 if be[n] <05

PI=0 i b 205 (10)

to demodul ate the chaotic sequence.

To update the filter coefficients, the error signal, defined as
the difference between the desired signal and the output of the
equalizer, is needed. In this case, it is obtained by assuming that
the received bit sequence, b[n], resembles the transmitted bit
sequence close enough so that it can be used as the input to the
linear filter, H(2). At the output of that filter, the chaotic
sequence is regenerated (see X[n]in Figure 4). Therefore, the

necessary error sequence is calculated from the following
equation

dn] = X[n] - x[n]

Once the error is obtained, well-known adaptive filter algorithms
such as NLM S can be used to update the filter coefficients.

11

Though chaotic modulation and equalizer have only been
explained for the sawtooth map, it is straightforward to extend
these results for the tent map or any other map based on the
symbolic representation given in Section 2. Also, instead of
using decision directed equalizer, one could use a decision
feedback equalizer. This equalizer would have an additiona FIR
filter on the feedback path whose input is the regenerated chaotic
sequence X[n] .

4. SSIMULATIONSAND RESULTS

To simulate the proposed algorithm, the channel was modeled to
have the impulse response

m. 1 _
C(n):EE+§cos[2n(n 2)/3] forn=123 (12)

H 0

It was also assumed that the channel adds white Gaussian noise,
w{n], to the signal. Therefore, the signal at the output of the
channel can be written as

rinl =c[n]* x{n] +w{n]

where x[n] is the output of the chaotic modulator. Typical
sawtooth and tent map chaotic sequences prior to channel

otherwise

(13)

b[n]
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Figure 5. Typica chaotic sequences generated by
(a) the sawtooth map and (b) the tent map.
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Figure 6. Mean-square error for the first 1000 iterations.

distortion are plotted in Figure 5 to illustrate the unstructured
nature of these signals.

To update the equalizer filter coefficients, the NLMS
algorithm was used. Adaptation starts with a training sequence,
i.e, a known segquence of information bits, to get an initid
estimate of the filter coefficients. For these simulations 20"
order equalizers were used with a step size of 0.1. The mean-
square error is plotted for the first 1000 iterations in Figure 6
with a noise variance of 0.001. Algorithm convergence speed
depends on step size.

We compare the performance of the proposed equalizer with
a standard equalizer, i.e., one that knows the training sequence
but is unaware that chaotic modulation has been used. In Figure
7, we plot bit error rate versus signal-to-noise ratio for both types
of equalizers and for both tent map and sawtooth map
modulations. From that graph, it is clear that the sawtooth map
modulator is not secure as a standard equalizer of sufficient order
works as well as the sawtooth map equalizer. On the other hand,
for tent map modulation with its additional nonlinearity, the
standard equalizer fails completely.
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Figure 7. Bit-error rate versus SNR (dB) for chaotic equalizers
(CE) and the standard equalizer (SE).

5. CONCLUSIONS

In this paper, we have proposed a chaotic communications
system and channel equalizer using one-dimensiona chaotic
maps. The symbolic-dynamic representation of these maps was
shown to be the key that makes possible chaotic modulation,
demodulation, and equalization. By exploiting this aternative
symbolic-dynamic representation, finite precision processing is
possible. Moreover, the proposed algorithm is fast and efficient.
Finally, the extension to higher dimension chaotic systems is
straightforward.
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