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ABSTRACT
 In recent years, a variety of communications systems based on

chaos and nonlinear dynamics have been proposed. However,
most of these algorithms fail to work under realistic channel
conditions. This paper presents a channel equalization scheme
for chaotic communication systems based on a family of
archetypal chaotic maps. The symbolic-dynamic representation
of these maps is exploited to allow a straightforward and
efficient implementation. Equalizer filter coefficients are
updated using appropriately modified versions of decision-
directed and decision-feedback equalization algorithms with
adaptation based on the NLMS algorithm.

1. INTRODUCTION

Chaos has received a great deal of attention in the past few years
from a variety of researchers, including mathematicians,
physicists, and engineers. Researchers in the area of signal
processing have largely been interested in chaos for the
development of nonlinear communications techniques. Such
communications systems offer the promise of inherent security,
resulting from the broadband and ‘noise-like’ appearance of
chaotic signals, and efficiency, since systems could be allowed to
operate in their natural nonlinear states. Even simple one-
dimensional maps can produce random-like yet deterministic
signals.  A variety of approaches to chaotic communications have
been proposed, including chaotic modulation, masking, and
spread-spectrum [1,2,3,4].  Because we believe that the chaotic
modulation techniques show the most promise, they are the focus
of this research.

A generic chaotic communications system based on chaotic
modulation is shown in Figure 1.  In such a system the
information bits to be transmitted must first be encoded in the
signal waveform generated by the chaotic system using what is
termed symbolic dynamics.  Rather than using structured signals,
such as rectangular pulses or sinusoids, to denote ‘0’s and ‘1’s,
these communications systems embed the information in the time
evolution, or dynamics, of the transmitted signal.  Regions of the
state space formed by the chaotic system’s dynamics are
designated to represent different symbols (i.e., sequences of ‘0’s
and ‘1’s).  The process of mapping the information bits to the
state of the chaotic system is termed chaotic modulation.  This
assignment of information bits to state should not be arbitrary,
and the greatest efficiency is achieved when the information
transmission rate matches the topological entropy of the chaotic
system [3].  Next, using an appropriate carrier, the chaotic
sequence is transmitted through the channel.  The effect of the
channel is to distort the transmitted sequence and corrupt it with

additive noise. The goal of the equalizer is to undo the distortions
caused by the channel. While most modern equalizers rely on
their knowledge of the transmitted signal’s waveform, either in
the form of a specific training signal or known signal structure
such as a constant modulus, this information is not available to
the equalizer of Figure 1.  In this case the equalizer has
information about the dynamics of the transmitted signal but not
its waveform.  Finally, the recovered chaotic sequence is passed
through a chaotic demodulator to obtain an estimate of the
transmitted bit sequence from the symbolic dynamics of the
reconstructed signal.

Although there have been many algorithms proposed for
using chaotic signals for communications purposes, there remain
several basic issues that need to be addressed.  First of all, almost
all of these algorithms disregard channel effects or fail to work
under realistic channel conditions. There has been some research
into equalization algorithms, but these only compensate for very
simple distortions such as a constant gain [5]. There is also a
need to address the finite precision processing used in any digital
communications system.   Under fixed point arithmetic, chaotic
systems are no longer chaotic and lose many of the properties
that make them attractive for communications purposes [7].
Finally, lack of efficiency and speed is a severe limitation for
many of the existing chaotic communications schemes.

In this paper, we present a framework to address all of these
important problems.  The proposed equalization algorithm is able
to compensate for the effects of a fading dispersive channel with
AWGN.  Simple techniques are also proposed for chaotic
modulation and demodulation at the maximum possible
information rate.  Additionally, alternative representations of the
proposed chaotic systems provide a means for implementation in
finite precision arithmetic. Chaotic communications systems are
often said to be secure because the transmitted signal has a
random appearance with little further justification.  Results
presented here will provide some insight into when such systems

Figure 1. Block diagram for chaotic communication system.
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are secure. Finally, it is shown that the proposed algorithms are
fast, accurate, and efficient.

 Section 2 provides background information on the class of
chaotic systems that will be considered. Then, the chaotic
communications systems and equalization algorithms are
presented in Section 3. Simulations and results for the proposed
algorithms are given in Section 4.

2. BACKGROUND

In general, discrete-time chaotic signals are represented as
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where )(⋅f is a nonlinear dynamical equation satisfying certain
properties such as a sensitivity to initial conditions.  Once the
nonlinear dynamics, )(⋅f , and an initial condition, ]0[x , are
specified, it is straightforward to generate a chaotic sequence.
However, because of finite precision, for many chaotic maps, the
sequence degenerates after a few iterations and is not chaotic.
Two of the most popular one-dimensional chaotic maps, the
sawtooth and tent maps, are examples of this problem. For our
purposes, instead of generating the sequence directly, an
alternative symbolic-dynamic representation will be used. This
symbolic-dynamic representation not only is the key to efficient
chaotic modulation and demodulation but also makes
equalization possible. In the remainder of this section, the
dynamical equations for these two maps and their corresponding
symbolic-dynamic representations are given.

The sawtooth map is given by the following dynamical
equation
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Its symbolic-dynamic representation is found from the binary
representation of  the chaotic signal
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so that the sawtooth map is given by
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More importantly, Drake and Williams [7] have shown that the
sawtooth map’s output is equivalent to the response of a linear
filter to a binary sequence.  The impulse response of this filter is
given by
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Thus, the output of the filter is given by ∑
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where the initial condition, ]0[x , completely determines the
sequence b[n]
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This linear filtering representation for the sawtooth map
provides a means for the chaotic modulation shown in Figure.
The input is the information bit sequence and the output is a
chaotic sequence. This implementation is illustrated in Figure 2.

The inverse filter for this chaotic modulator is a simple two-
tap FIR filter whose input is a sawtooth chaotic sequence and
output is a binary sequence. The transfer function for this inverse
filter is

1
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Thus, the chaotic demodulator of Figure 2 is just this inverse
filter.

To be able to represent the sawtooth chaotic map in terms of
linear filtering is especially important from a signal processing
point of view. With this representation, not only is the chaotic
system written in terms of an operation that is extremely familiar
to the signal processing community (i.e., convolution), but it
demonstrates that chaotic systems are not necessarily nonlinear
and may have a completely equivalent linear representation.
Other chaotic systems with linear representations are considered
in [8].

Consequently, a binary bit sequence can be used as the input
to the filter of Eq. (5) to get a chaotic data sequence. In practice
this is not a possible because this filter is noncausal and has an
infinite length. However, one need only to make reasonable
modifications for it to be realizable, i.e. make simplifications
such that the filter has finite-length and is causal.  First, as the
filter coefficients decay very rapidly, the filter can be truncated.
Second, by shifting the resulting coefficients, we can make the
filter causal. The final filter impulse response will then be
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Figure 2. Representation for sawtooth chaotic modulation and
demodulation through linear filtering.

Figure 3. Two different implementations for generating
indistinguishable  chaotic sequences.
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Truncation results in a loss of precision and shifting the
coefficients results in delay, both of which are tolerable. Because
of these modifications, the output will approximate a chaotic
sequence within the limits of finite precision arithmetic. This
structure is shown in Figure 3.  The bit sequence can then be
obtained from the chaotic signal by use of the inverse filter given
previously.  Thus, the chaotic modulation and demodulation
problems are solved with very simple filtering operations for the
sawtooth map.  This forward and inverse filtering representation
is the key for the proposed channel equalization algorithm.

A similar framework exists for another popular chaotic map,
the tent map, given by the dynamical equation
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The tent map also has a binary representation given by
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Thus, this map may be implemented in a similar manner as the
sawtooth map with a simple nonlinearity added to the modulator

and demodulator to account for *
kb .

Using these two popular one-dimensional chaotic maps, one
can generate more chaotic maps through one-to-one
transformations. For instance, the logistic map, which is another
popular chaotic map, can also be produced with this approach.
Additionally, by combining one-dimensional maps in different
forms, one can obtain higher dimension chaotic maps [8]. Thus,
one could easily map bit sequences to higher dimension chaotic
sequences.

3. CHAOTIC COMMUNICATIONS
SYSTEM AND EQUALIZER

At this point, it should be clear how chaotic modulation and
demodulation are performed. To implement chaotic
demodulation, i.e. to invert the symbolic dynamics, one needs
ideally to have the original transmitted chaotic sequence. As
mentioned earlier, because of the channel effects, the received
chaotic sequence will be distorted. Therefore, an equalizer is
needed to recover the transmitted chaotic sequence such that  the
demodulator gives the correct bit sequence. This section looks at
the equalizer component of the block diagram. For
simplification, a discrete-time representation will be used and the
sawtooth map is assumed.

The equalizer and chaotic demodulator are shown in detail
in Figure 4. In this block diagram, ][nr represents the output of

the channel, which is a distorted chaotic sequence, and the
equalizer is an adaptive FIR filter.  The output of this equalizer,
denoted by xe[n], is the restored transmitted chaotic sequence.
Then, xe[n] is passed through the inverse filter, H-1[z], given in
Section 2 and thresholded by
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to demodulate the chaotic sequence.

To update the filter coefficients, the error signal, defined as
the difference between the desired signal and the output of the
equalizer, is needed. In this case, it is obtained by assuming that

the received bit sequence, ][
~

nb , resembles the transmitted bit
sequence close enough so that it can be used as the input to the
linear filter, H(z). At the output of that filter, the chaotic
sequence is regenerated (see ][~ nx in Figure 4). Therefore, the
necessary error sequence is calculated from the following
equation

][][~][ nxnxne e−= (11)

Once the error is obtained, well-known adaptive filter algorithms
such as NLMS can be used to update the filter coefficients.

Though chaotic modulation and equalizer have only been
explained for the sawtooth map, it is straightforward to extend
these results for the tent map or any other map based on the
symbolic representation given in Section 2.  Also, instead of
using decision directed equalizer, one could use a decision
feedback equalizer. This equalizer would have an additional FIR
filter on the feedback path whose input is the regenerated chaotic
sequence ][~ nx .

4. SIMULATIONS AND RESULTS

To simulate the proposed algorithm, the channel was modeled to
have the impulse response
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It was also assumed that the channel adds white Gaussian noise,
][nw , to the signal. Therefore, the signal at the output of the

channel can be written as
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where x[n] is the output of the chaotic modulator.  Typical
sawtooth and tent map chaotic sequences prior to channel
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Figure 4. Channel equalizer for the sawtooth chaotic map.



distortion are plotted in Figure 5 to illustrate the unstructured
nature of these signals.

To update the equalizer filter coefficients, the NLMS
algorithm was used. Adaptation starts with a training sequence,
i.e., a known sequence of information bits, to get an initial
estimate of the filter coefficients.  For these simulations 20th

order equalizers were used with a step size of 0.1. The mean-
square error is plotted for the first 1000 iterations in Figure 6
with a noise variance of 0.001.  Algorithm convergence speed
depends on step size.

We compare the performance of the proposed equalizer with
a standard equalizer, i.e., one that knows the training sequence
but is unaware that chaotic modulation has been used.  In Figure
7, we plot bit error rate versus signal-to-noise ratio for both types
of equalizers and for both tent map and sawtooth map
modulations. From that graph, it is clear that the sawtooth map
modulator is not secure as a standard equalizer of sufficient order
works as well as the sawtooth map equalizer. On the other hand,
for tent map modulation with its additional nonlinearity, the
standard equalizer fails completely.

5. CONCLUSIONS

In this paper, we have proposed a chaotic communications
system and channel equalizer using one-dimensional chaotic
maps. The symbolic-dynamic representation of these maps was
shown to be the key that makes possible chaotic modulation,
demodulation, and equalization.  By exploiting this alternative
symbolic-dynamic representation, finite precision processing is
possible.  Moreover, the proposed algorithm is fast and efficient.
Finally, the extension to higher dimension chaotic systems is
straightforward.
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Figure 7. Bit-error rate versus SNR (dB) for chaotic equalizers
(CE) and the standard equalizer (SE).

Figure 5.  Typical chaotic sequences generated by
                 (a) the sawtooth map and (b) the tent map.
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Figure 6. Mean-square error for the first 1000 iterations.
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