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ABSTRACT
We consider the problem of multi-user detection for CDMA
systems where the codes of some users are known while
others are unknown, called semi-blind detectors. An example
is at the base station of a cellular communication systems
with interference from both in-cell users, with known codes,
and out-of-cell users, with unknown codes. In this paper we
develop a hybrid semi-blind detector, which is partly
decorrelating, partly MMSE. Subspace tracking methods are
developed for on-line implementation of the detector. The
performance of the detectors is compared to that of the purely
blind MMSE detector and the non-blind MMSE detector, and
the semi-blind detector is seen to have a considerable better
performance.

1. Introduction

Multi-user detection is a method to improve detection
performance and capacity of multiple access spread spectrum
(or CDMA) systems. Multi-user detection was introduced by
Verd� in [1], where the optimal multi-user detector was
derived. The optimal detector has an exponential complexity
in the number of users, and less complex (linear) multi-user
detectors were therefore derived in an number of papers, in
particular the decorrelating detector [2] and the minimum mean
square error (MMSE) detector [3].

The early works on multi-user detection assumed that the
codes of all users were known at the receiver, and made a
simultaneous detection of all users (therefrom the name multi-
user detection or joint detection). If the detection for example
is at the base station of a mobile communication system, this
seems realistic, as the base station needs to perform detection
for all users. On the other hand, it is unrealistic that a mobile
station should know the codes of all other users in a cell, and
therefore it is desirable to consider multi-user detectors that
need to know only the code of the desired user and does not
use a training sequence, blind multi-user detection. The blind
MMSE detector was introduced in a number of papers [5], and
recently it was also shown that the decorrelating detector can
be implemented blindly [8,9].

Although a base station knows all codes of the users within a
cell, it typically will not know the codes of interfering users
from surrounding cells. Even if a base stations could obtain
this knowledge from surrounding base stations, it would be a
waste of resources if it were to also perform detection for these
users just to cancel interference (including synchronization
etc.). This is a serious problem to multi-user detection, since
typically 1/3 of the interference could be from other cells,
intercell interference [6]. Thus, also at the base station blind
detectors could be relevant. On the other hand, blind
detectors do not use neither the fact that the codes of in-cell

users are known at the base station, nor that these other users
also have to be detected.

This has led us to consider multi-user detectors that can
cancel interference from both known and unknown users,
while utilizing the information about known users and the
fact that detection has to be done for all known users. A blind
multi-user detector basically in some way has to estimate the
codes of interfering users, and by using the known codes the
estimation accuracy can be improved.  On the other hand,
since several users have to be detected jointly, it is also
advantageous, considering computational complexity, if some
of the processing can be common to all users. In this paper we
will develop detectors that satisfy these two criteria.

In a previous paper [10], the decorrelating semi-blind detector
was derived and implemented using SVD. In the current paper
we will extend this to a detector that is decorrelating among
the known users, and MMSE with respect to the unknown
users. Furthermore, we develop a subspace tracking method for
the detector, which is more efficient than using SVD. We will
use the subspace approach of Wang and Poor [9], and as in [9]
we will only consider the synchronous case, since this gives
a better understanding of the underlying geometry of the
problem. Since most applications of the detectors would
probably be in asynchronous systems, the detectors will be
generalized to the asynchronous case in a later paper.

2. System model

Consider a synchronous spread spectrum communications
system with the users transmitting through an additive white
Gaussian noise channel. The user population consists of K

users with known codes, and K̃  users with unknown codes.
As we consider synchronous systems, it is sufficient to con-
sider a single symbol interval [0,T], where the received signal
can be written as
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where sk is the normalized code waveform of the kÕth known
user with support in [0,T], s̃k  the waveform of the kÕth

unknown user, b bk k, ˜ are the transmitted bits (±1), A Ak k, ˜  the
amplitudes and n white Gaussian noise. We assume that the
codes are given by chip codes,
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the chip waveform, and similarly for the unknown users. A
sufficient statistic for the received signal is therefore the
output of a chip rate sampled chip matched filter, and we can
write this statistic on vector form as
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matrix of r is given by
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We will assume that all codes, of both known and unknown

users, are linearly independent, so that S S̃[ ]  has full rank.

3. Detector Structures

A general linear detector for user i is given by
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For jointly detection of all users, the detector can be written

ˆ sgnb W r= ( )T

where   W w w w= [ ]1 2 L K . As argued in [7], any

interesting detector must have w S Si ∈ [ ]( )range ˜ , since any

component of wi outside this subspace will only increase
noise without reducing interference.

4. Semi-blind decorrelating detectors

We will derive two different semi-blind detectors. Define
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be the projection unto the subspace spanned by S1, with

P I P1 1
⊥ = −  the projection unto the orthogonal subspace.

In our first approach to semi-blind decorrelating detectors, we
use a mixed projection/orthogonalization approach. The idea
is to first project r on the subspace orthogonal to span( )S1 ,
with S1 given by (1). Thereby all interference from the known
users has been removed. The orthogonalization approach i s

then used in span( )S1
⊥ . The calculations can be done as

follows. Let P1 be defined by (2), and define ˜ ˜S P S s1 1 1= [ ]⊥ ,
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Then we have

Theorem 1: The decorrelating detector is given by
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Furthermore, the eigenvalue decomposition of R̃ P RP1 1 1= ⊥ ⊥

can be written as
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In our setting, S̃  is unknown. The theorem, however, outlines

a method for estimating W̃1 , and the method can therefore be
implemented without knowledge of the unknown usersÕ
codes.

The problem of the above method is that W̃1  depends i s
specific to user 1. Thus, if several users are to be detected in
parallel, an SVD/subspace tracking has to be done for each
user.

We will therefore develop a method that requires only one
SVD common to all users. This method will be based on an
orthogonalization approach. First we define the projection on
span( )S ,

P S S S S= ( )−T T1

and P I P⊥ = − . The eigenvalue decomposition of P RP⊥ ⊥  i s
then given by
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where ˜ diag( ˜ , ˜ , ..., ˜ )˜Λ s K
= λ λ λ1 2  with λ̃ σi > 2 , and Ũo  has K

rows.

Theorem 2: The decorrelating detector is given by
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Proof: see [11].

Notice that all quantities in the theorem can be estimated.
Notice also, that although R appears explicitly, R itself does
not have to be estimated. We can use that
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where ˆ ( )R n   etc. denote the estimated quantities over n

samples. The matrix on the left side is only a K K× ˜  matrix,
instead of the M2 matrix R.
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Figure 1: Hybrid semi-blind detector.

5. Hybrid Semi-Blind Detectors

We will in this section consider detectors that are
combinations of the decorrelating detector and the MMSE
detector. Specifically, we will study detectors that are
decorrelating among the known users and MMSE with respect
to the unknown users. We will call this class of detectors
hybrid semi-blind detectors. The idea is similar to ideas used
in array processing: to direct nulls in the direction of known
interferers, and find the MMSE solution for the remaining
interference, and has in this context also been studied for
multi-user detection.

As for the decorrelating detector we will give two solutions
for the hybrid detector: one that makes a subspace calculation
for each user, and one that makes a common subspace tracking.
For the former case we get the following theorem 3. We use the
same notation as for theorem 1.

Theorem 3: The hybrid semi-blind detector is given by
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For the case of common subspace tracking we get, with the
same notation as for theorem 2

Theorem 4: The hybrid semi-blind detector is given by
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Proof: see [11].

In general, the MMSE detector has superior performance to the
decorrelating detector [7], and it would therefore be natural to
study pure MMSE semi-blind detectors. However, the hybrid
approach has a number of advantages: when the multi-user
detector for the known users is implemented non-adaptively,
the MMSE detector requires estimates of user powers, while
the decorrelating detector does not require any estimated
information (except timing information in the asynchrouneous
case).

6. Subspace Tracking

A host of different subspace tracking methods, with varying
convergence speed and complexity, esist, and most of them can
be adapted to the current problem. To illustrate the principles
we have chosen to use the F2 algorithm [12]. Define
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Let the SVD of W(n) truncated to the largest K̃  singular

values be X YΓ H . The matrices ˜̂ ( )Us n − 1  and ˜̂ ( )Λ s n − 1  can
then be updated as follows:
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When using subspace tracking for the semi-blind detectors (6)
and (4), the main problem is that equation (5) is not directly

suitable for recursive implementation, since ˆ ( )Us n  should be
applied to all previous samples. For a recursive
implementation, either R must be calculated (recursively) or a
recursive update formula for (5) must be found. One

possibility is to replace ˆ ( )Us n  with ˆ ( )Us i  inside the
summation, but we have found this does not give too good
convergence (but sufficient for a slow converging tracking
method as PASTd). Another approximation can be found as
follows. Define
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The justification of this approximation is geometrical.

˜̂ ( ) ( )U Ts
Tn n  represents the orthogonal projection of ˆ ( )R Sn T

onto the subspace spanned by ˜̂ ( )Us n . To find the projection

of  ˆ ( )R Sn T  onto the subspace spanned by ˜̂ ( )Us n + 1  we

should reproject ˆ ( )R Sn T . Instead we project the previous
projection. If the subspace does not change too much from n to
n+1, the approximation is only slight.

The calculation of ˜̂ ( ) ˜̂ ( )U Us
T

sn n + 1  is complex in itself.
Fortunately, this can be obtained as a intermediate result in
some subspace tracking algorithms, for example F2. Notice

that since ˜̂ ( ) ˜̂ ( )U U Is
T

sn n = , we have
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7. Simulation results

We consider a system with K=7 users with known codes, and
4 users with unknown codes. The users are assigned purely
random codes of length M=31. An ensemble of 100 different
random code assignments is generated, and the average signal
to inference and noise ratio (SINR) is calculated over all code
choices and users.
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Figure 2: Peformance with 7 known and 4 unknown
users.

We consider 5 different detectors, all implemented using the
F2 subspace tracking

Single      user   : the traditional single user matched filter detector.

Full        MMSE    : the hypothetical MMSE detector that knows all

K K+ ˜  codes, giving a performance bound for any blind/semi-
blind linear detector.

MMSE    : the MMSE detector for the known users, disregarding
the unknown users.

Blind   : the blind MMSE detector of [9].

Semi-blind     :   the detector given by (6).

The  number of unknown users K̃  is, unrealistically, assumed

to be known. We will not address the estimatiuon of K̃  here.

In Figure 2 we have plotted the convergence of the average
SINR. The SNR is 20 dB and all users (known and unknown)
have the same power. It is seen that the blind detector of [9]

needs considerably more iterations to converge to a given
level of performance than the semi-blind detectors in all
situations. The performance using F2 is indistinguishable
from the performance using SVD, in spite of the approximation
we have committed.

8. Conclusion

In this paper we have developed hybrid semi-blind detectors.
They are distinguished by the fact that they can cancel
interference from both known and unknown users, like blind
detectors, while simultaneously using the knowledge of
known users. Simulations have shown that the semi-blind
detectors have notably better performance than the pure blind
detectors, and furthermore they have a considerably lower
computational complexity.

We have also developed a subspace tracking algorithm based
on the F2 algorithm. The performance of this is almost
identical to SVD.
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