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ABSTRACT

The effect of sampling and quantization on frequency estimation
for a single sinusoid is investigated. Asymptotic Cram´er-Rao bounds
(CRB) for 1-bit quantization and for non-ideal filters are derived,
which are simpler to calculate than the exact CRB while still rel-
atively accurate. It is further investigated how many bits should
be used in quantization to avoid the problems of 1-bit quantiza-
tion, and it turns out that 3-4 bits are enough. Finally, oversampled
1-bit quantization is investigated. It is determined how much the
signal should be oversampled, and in addition�� modulators are
investigated.

1. INTRODUCTION

This paper considers the classical problem of estimating the pa-
rameters of a single complex-valued sinusoid (cisoid) in additive
Gaussian noise. The estimation is usually done digitally, and the
paper therefore investigates the effects of digital processing, namely
the effects of sampling, including anti-aliasing filters, and quanti-
zation.

The initial input signal to the system is a continuous time ob-
served signal, which can be modeled as (fort 2 (�1;1))

x(t) = Aei(!t+�) + w(t) = s(t; �) +w(t) (1)

wherew(t) is continuous time white Gaussian noise (WGN) with
power�2. The noise power�2, the amplitudeA (A > 0), the
(angular) frequency!, and the initial phase� are all unknown.
The parameter of main interest is!. The information on! in data
is coupled to the information on the initial phase so! and� are
gathered in the parameter vector� = (! �)T whereT denotes
transpose.

Prior to sampling, the noisy cisoid is transmitted through an
analog anti-aliasing filter. We here assume that the signal has been
stationary for so long time prior to the start of the sampling pro-
cess, that we can disregard the transient response. Thus, if the
anti-alising filter has frequency responseH(!) and the sampling
time isTs the sampled signal is (fork = �1; : : : ; 0; 1; : : : ;1)

x[k] = s[k; �] + v[k] = AH(!)ei(!Tsk+�) + v[k]: (2)

Here and in the sequel all quantities associated with the continuous
time signal are denoted by(�) and all quantities associated with the
discrete time signal by[�]. In (2), v[k] is additive Gaussian noise,
which is not necessarily white.

After sampling, the signal is quantized, i.e., rounded to one
of a finite number of levels. If the quantization is very fine, e.g.,
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12 bits precision, the quantization can be disregarded or treated
as another source of additive noise. However, some applications
deal with very high frequency signals and fine quantization is im-
possibly or economically infeasible. We therefore consider coarse
quantization, in particular single-bit quantization, with observa-
tions given by,

x+[k] = sign(<(x[k])) + isign(=(x[k])) (3)

where<(�) and=(�) denote the real and imaginary parts of the
quantity between the parentheses, respectively, andsign(�) de-
notes the sign function, i.e.sign(x) = 1 for x � 0 andsign(x) =
�1 for x < 0. The advantage of 1-bit quantization is the simple
implementation, which has made it popular in, for example,��-
modulators. For the present application, 1-bit quantization also
has the advantage that no gain control is needed and, as will be
seen below, that very efficient algorithms for processing of 1-bit
samples can be made.

Since we are mainly interested in the increase in variance due
to quantization and sampling, we will often userelative variance
or relative CRB, meaning the variance respectively the CRB rel-
ative toCRB(!̂) = 6�2=(A2N(N2 � 1)) corresponding to the
CRB for un-quantized data and ideal anti-aliasing filters at sam-
pling rateTs = 1 [3].

2. EFFECTS OF QUANTIZATION

The following theorem was derived in [1].

Theorem 1 [1] Consider the sampled signal (2) for an ideal anti-
aliasing filterH(!) = 1. Then the Fisher information matrix for
the parameters� = (! �)T corresponding to the 1-bit quantized
observationsfx+[0]; : : : ; x+[N � 1]g in (3) is given by

I(�) = 2
2

�

�
A

�

�2 N�1X
k=0

�
k2 k
k 1

�
�(!k + �;A=�) (4)

where0 < �('; s) � 1 is a function with period�=2, given by

�('; s)=
exp

�
�2s2 cos2'

�
1�erf2(s cos')
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�
�2s2 sin2'

�
1�erf2(s sin')

cos2':

(5)

In contrast to the case of no quantization, the Fisher matrix and
CRB cannot in general be summed explicitly to give a simple for-
mula. However, as�('; s) is periodic with period�=2, the func-
tion�(!k+�;A=�) is independent ofk for ! an (integer) multiple
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Figure 1: Asymptotic CRB as a function of SNR. Acritical fre-
quencyis a frequency with! an (integer) multiple of�=2.

of �=2, so that we get

CRB(!̂)j!=n�=2 =
6�2

A2N(N2 � 1)

�

2�(�;A=�)
: (6)

whereCRB(!̂) is the (1,1)-element ofI(�)�1. This CRB is strongly
dependent on the phase�. Since a realistic assumption is that the
phase is a uniform random variable, a more interesting CRB is ob-
tained by averaging (6) over the phase [2]. For other values of!
the following theorem can be used

Theorem 2 [2] Suppose that!=� is irrational. Then the asymp-
totic CRB at! for 1-bit sampling is given by

AsCRB(!̂) = lim
N!1

N3CRB(!̂) =
6�2

A2

�

2��(A=�)
(7)

where ��(A=�) =
1

2�

Z 2�

0

�(';A=�)d': (8)

Notice that the asymptotic CRB is not dependent upon the phase.
By numerical calculation it appears that��(s)s! K for s !

1 whereK � 1:28. We have not tried to prove this formally,
but have observed that for SNR> 10 dB the relation is accurate
within a few percent. This gives the following approximation to
the CRB (for!=� irrational)

CRB(!̂) �

(
7:36p

SNRN3
for high SNR

9:42
SNRN3 for low SNR

: (9)

Figure 1 shows the asymptotic CRB (7) versus SNR. For low
SNR the only effect of quantization is an increase of the CRB by a
factor of�=2 [2]. However, for large SNR, and at frequencies with
! a multiple of�=2, which we will call critical frequencies, the
CRB increaseswith SNR. This might seem surprising, but is not
unusual for coarse quantization. For the non-critical frequencies,
the CRB decreases with increasing SNR, but not as fast as for no
quantization.

The asymptotic CRB can be used as a good approximation
for non-critical frequencies andN � 16, as seen from Figure 2.
At the critical frequencies, on the other hand, (6) averaged over
the phase can be used. From this equation it can be seen that the
' height' of the peaks at the critical frequencies does not decrease
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Figure 2: Relative variance versus frequency for varyingN . The
SNR is 10dB.

with increasingN , whereas from the figure it is revealed that the
widthdecreases (the width is approximately inversely proportional
to N ). This means that for largeN the effect of the critical fre-
quencies will be minimal, since even a slight jitter in frequency
will make the probability of hitting a frequency inside the peak
very small. But for smallN the critical frequencies is a fact that
has to be taken seriously into consideration.

For quantization with a higher number of bits, the problem to
be solved is the optimization of the quantization levels. This could
be solved by calculating the CRB and minimizing the CRB with
respect to the quantization levels. However, as the CRB for 1-bit
quantization is already quite complicated, we have not attempted
to calculate the CRB for higher number of bits. Instead we have
pursued a more heuristic way. Following [5], we selected the quan-
tization levels by minimizing the mean square error between the
continuous signal and the quantized signal. Here we limited atten-
tion to a symmetric, uniform quantizer withB bits. Furthermore,
the real and imaginary part of the signal are quantized indepen-
dently. Specifically, if we letQ(x;�) be the output of the quan-
tizer, we can then find� by minimizing the mean square differ-
ence between the (real part of the) signal and its quantized value,
averaged over all phase values,

�opt=argmin
�

Z 2�

0

E
�
jQ(A sin(x)+v; �)�(A sin(x)+v)j2

�
dx

(10)
wherev is a zero-mean Gaussian random variable of variance�2=2.
The optimization (10) can be done by calculating the integral and
expectation numerically, and performing a 1-dimensional numer-
ical peak location. In general the optimal value of� depends on
the SNR. For high SNR, and a large number of bits, an ad-hoc way
of chosing� is to utilize the full scale of the quantizer, i.e. to put
max' A cos' = maxxQ(x;�), giving� � A=(2B�1 � 1=2).

3. EFFECTS OF SAMPLING ON CRB

As was shown in the previous section, when using coarse quan-
tization it is necessary to oversample the signal in order to avoid
the variance increase at certain frequencies. It is therefore also
necessary to consider the actual anti-aliasing filters used prior to
sampling.

We consider a fixed rational low-pass filterH(s), i.e., such
thatH(s) is a rational function ins with the degree of the nu-



merator larger than that of the denominator. This means that the
limit lim!!1 jH(!)j2 = 0. We assume thatH(s) has (circu-
lar) cut-off frequency 1, and we vary the cut-off frequency!c by
consideringH(s=!c).

The continuous time WGN processw(t) in (1) is transmit-
ted through the filterH(s=!c), with outputv(t). The processv(t)
then is a Gaussian random process with spectral densityS(s=!c) =
H(s=!c)H(�s�=!c)� (where� denotes conjugate) and correla-
tion functionR(t). The processv(t) is sampled equidistantly with
sampling intervalTs = 2�=!s, giving the discrete time noisev[k].
It is clear that the correlation function ofv[k] is the sampled corre-
lation function ofv(t), that isR[k] = R(kTs). We can therefore
find the spectral densityS[z] of v[k] by residue calculus. The fol-
lowing asymptotic (asN !1) result holds true,

Theorem 3 [2] Consider the problem of estimating! in (2) with
Ts = 2�=!s andH(s=!c) being a continuous time anti-aliasing
filter with cut-off frequency!c and lim!!1 jH(!)j2 = 0. Then,
the asymptotic CRB is

AsCRB(!̂) = lim
N!1

N3CRB(!̂) =
6�2S[!Ts]

A2jH(!=!c)j2T 2
s
: (11)

The quotientjH(!)j2A2=S[!Ts]�
2 can be interpreated as the lo-

cal SNR at!. The asymptotic CRB gives some insight into the ef-
fect of sampling and anti-aliasing filters, and it is straightforward
to calculate. In contrast to asymptotic CRB for 1-bit sampling,
it has, however, a limited accuracy ifN is small, the cut-off fre-
quency!c is small, or the sampling frequency!s is large.

For the asymptotic CRB, the optimization of sampling can
partly be done analytically. First, we have

Theorem 4 [2] For fixed!,AsCRB(!̂) is an increasing function
of !c for the class of Butterworth filters.

This can be interpreted so that for largeN , the cutoff frequency
!c should be chosen as small as possible. The CRB can then be
found by

Theorem 5 [2] Let H(s) be a general, rational filter, and let
m > 0 be the difference between the degree of the numerator and
the denominator ofH(s). Then

lim
!c!0

AsCRB(!̂) = �
6�2T 2m�3

s !2m

A222m(2m� 1)!
cot(2m�1)

�
�
!Ts
2

�
:

(12)

This expression can be used as a good approximation for small!c.
As far as we know, no closed form expression exists for then' th
derivative ofcot(�), but for smalln compact formulas can easily
be found. Once the derivative ofcot(�) has been found,Ts can be
easily optimized numerically.

The problem for 1-bit quantization is that the variance increases
dramatically at the critical frequencies. One way to avoid these
critical frequencies is to oversample with at least a factor 4, so that
only the spectrum between two critical frequencies is used. Since
one of the critical frequencies is 0, the signal also has to be fre-
quency shifted prior to sampling, so that 0 frequency is positioned
in the middle between two critical frequencies. This can be done
by applying a frequency shift of1=8 of the sampling frequency
prior to sampling.

¿From Figure 2 it can be seen that the peaks around the critical
frequencies do not have zero width. We therefore chose the over-
sampling factor so that the maximum and minimum frequencies
will be at thesecond local minimumfrom the peak. ForN = 16

this minimum is situated at approximately!=� = 0:06. This
means that the usable part of the spectrum is situated in the range
!=� 2 [0:06; 0:44]. To map the whole range!=� 2 [�1; 1] into
this range, the signal has to be oversampled by a factor 5.25 and
shifted in frequency by1:3125�, i.e., 1=8 of the sampling fre-
quency. ForN = 32 the an oversampling of 4.5 times is needed,
and forN = 8 an oversampling of 8 times is needed.

While the oversampling factor depends on the number of sam-
ples used, the frequency shift is always1=8 of the sampling fre-
quency. This shift frequency could be obtained by using analog
frequency doublers or frequency dividers.

The specific anti-aliasing filter and its cutoff frequency is not
very critical due to the large oversampling factor. We find that
a Butterworth filter of order at least two will do. The CRB has a
minimum for a cutoff frequency of approximately�, but is not very
sensitive to the cutoff frequency. The variation is a few percentage
in a wide range around�.

An alternative to using oversampling by itself is to use an over-
sampled�� modulator. The advantage of using a�� modulator
is that the frequency shift is not needed. We found that when a��
modulator is used, the increase in variance at 0 frequency disap-
pears. However, a�� modulator increases variance at high fre-
quencies, and an oversampling factor of at least 4 should therefore
be used. The advantage of using the�� modulator compared to
plain oversampling is then that the frequency shift is not needed.
However, the gain control for the�� modulator needs to be rather
accurate. We found that the amplitude of the sinusoid into the��
modulator should be around 1.

The same processing as for plain oversampling can be used to
the output of the�� modulator.

4. FREQUENCY ESTIMATION

For white noise and un-quantized data the maximum likelihood
estimator (MLE) is well known given by the location at which the
periodogramP (!) attains its maximum [3]. Under an assumption
on high SNR, a formula for the argument ofmaxP (!) is [2]

!̂ =
12

N2(N2 � 1)

N�1X
k=1

k(N � k)6 [R̂[k]] (13)

whereR̂[k] (for k = 0; : : : ; N � 1) is the biased autocovariance
estimator, and̂R[�k] = R̂[k]�. A simplification of (13) is to trun-
cate the sum afterM < N � 1 terms and replace the parabolic
window with an arbitrary windowV [k], see [2]. The integerM
roughly determines the trade-off between numerical complexity
and statistical accuracy. ForM > 1 a direct implementation of an
estimator based on6 [R̂[k]] has to be combined with some phase
unwrapping procedure. Alternatively, they can be rewritten in dif-
ferential form.

For 1-bit quantized data it no longer holds true that the esti-
mated autocorrelation̂R[m] is close toR[m] = Ex[k]x�[k�m],
whereR[m] = A2ei!m + �2�m;0. In fact, for largeN and small
SNR it holds thatR̂[0] ' 2 and R̂[m] ' 4A2ei!m=�2�, for
m = 1; : : : ;M [4]. Thus, a correlation based estimator provide
approximately unbiased estimates for SNR slightly above its SNR-
threshold. For large SNR the estimate no longer will be unbiased.
An expression for the asymptotic bias (as SNR!1, for a general
V [k]) was derived in [1].
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Figure 3: Variance versus frequency forN = 32 and SNR=12 dB
for 4-th orderButterworthfilters (see, table 1 in [2]). The number
of ensembles for each frequency was 10000 with random phase.

5. SIMULATION RESULTS

Effects of Number of Bits on VarianceFigure 3 show the vari-
ance of the frequency estimate forN = 32 samples for different
number of bits used in the quantization. As estimator we used in
all cases an FFT based estimator with 4 times zero-padding, and
peak-finding by triple parabolic interpolation. As anti-aliasing fil-
ters 4-th order Butterworth filters were used with cut-off frequen-
cies and sampling frequencies selected from table 1 in [2].

We can make several observations from the figures. First, we
note that the dramatic increase in variance predicted by the CRB
around certain frequencies for 1-bit quantization also show up in
simulations (see ' 1 bit, ideal filters' in Figure 4). However, right
on the critical frequencies (e.g., 0.25), the variance is lower than
the CRB, while it is larger right next to the critical frequency. This
is due to the fact that there is a strong bias towards the critical
frequencies, so exactly these frequencies have a low variance. In
Figure 3 the peak is not at exactly 0.25, since a slight oversampling
is used for non-ideal filters.

Already by using 2 bits, the phenomenon almost disappears,
and by using 4 bits the results are indistinguishable from the un-
quantized results. The quantization levels where optimized ac-
cording to (10), but using� � A=(2B�1 � 1=2) gives almost
the same results. Thus, 4 bits seems to be a good choice for quan-
tization. Even if the gain control is wrong by a factor 2, the per-
formance is no worse than for 3 bits, which only decreases perfor-
mance by a fraction of a dB.

1-bit Quantization and OversamplingHere, we consider the cor-
relation based estimators (13) called approximate MLE (AMLE).

Figure 4 shows the performance of the AMLE with or with-
out 1-bit quantization and oversampling. It is seen that the AMLE
reaches the CRB both for ideal filters and for Butterworth filters,
except at frequencies near 0.5, where the phase unwrapping causes
problems. The problem is less for the differential implementation,
and can also be avoided by increasing the sampling frequency.
However, the latter also increases either complexity or variance,
depending on whetherT = N � Ts orN is fixed.

For 1-bit quantization and oversampling, forN = 32 an over-
sampling factor of4:5 is used together with1=8 frequency shift.
For the oversampled�� modulator (SDM), also4:5 times over-
sampling is used, but without a frequency shift. The number of
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Figure 4: Variance versus frequency forN = 32 and SNR=12 dB
for 4-th order Butterworth filters (see, table 1 in [2]). The number
of ensembles for each frequency was 10000 with random phase.

samples used is4:5 � 32 = 144. Using 128 samples are advan-
tageous for hardware implementation, but gives a slightly higher
variance [2]. It can be seen that the�� modulator gives a lower
variance than plain oversampled 1-bit sampling at low frequencies,
but a higher variance at high frequencies.

6. CONCLUSIONS

The asymptotic CRB on the variance of any consistently estimated
frequency based on 1-bit quantized observations is derived. It is
shown that forcritical frequenciesthe CRB increases with increas-
ing SNR. On a short distance from the critical frequencies the CRB
decreases with increasing SNR.

It is also shown that the effects of quantization are practically
negligible employing a quantizer with 3 or 4 bits.

An alternative to increasing the number of bits of the quan-
tizer, is to use 1-bit quantization employing a sampling rate be-
yond Nyquist. A closed form expression for the asymptotic CRB
on the variance of estimated frequency is derived based on obser-
vations prefiltered by a non-ideal anti-aliasing filter. It is shown
that for reasonable sample sizes, a combination of oversampling a
factor4 combined with frequency shifting by1=8 of the sampling
frequency fully eliminates the effects of quantization, even when
employing a low-order anti-aliasing filter.
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