
OPERATION SCHEDULING FOR PARALLEL FUNCTIONAL UNITS
USING GENETIC ALGORITHMS

Th. Zeitlhofer and B. Wess

INTHFT, Vienna University of Technology
Gusshausstrasse 25/389, A-1040 Vienna, Austria

E-Mail: thomas.zeitlhofer@tuwien.ac.at, bwess@email.tuwien.ac.at

ABSTRACT

In this paper, we describe a new and efficient approach to solve
the scheduling problem for VLIW architectures. The scheduling
times of the operations are used as the problems parameters. This
in conjunction with a pruning technique based on critical path anal-
ysis leads to a significant reduction of search space complexity. A
genetic algorithm is used to search for valid schedules of a given
length. The genetic algorithm uses a fitness vector that guides the
genetic operators crossover and mutation resulting in a fast con-
vergence towards near perfect solutions. The proposed method
is also applicable to the problem of register allocation by using a
different fitness function. Another advantage of the genetic algo-
rithm approach is that usually a great number of equally perform-
ing schedules is obtained allowing for further optimization subject
to arbitrary constraints.

1. INTRODUCTION

The need for DSP compute cycles increases rapidly. This is pri-
marily related to the growing field of media and communications
processing. In modern DSPs a potential increase in performance
is achieved by the VLIW architecture design [1] which enables the
use of instruction level parallelism (ILP).

Involved with the existence of parallel functional units is an
increased complexity of the scheduling problem. So the need for
new and efficient compiler techniques becomes obvious, especially
when the poor performance of C-compilers for DSPs is consid-
ered.

Scheduling techniques for VLIW architectures have been stud-
ied for several years. They can be subdivided intolocal andglobal
compaction. Local compaction considers onlybasic blockswith-
out control flow [2]. This work will focus on local compaction as
these techniques can be reused in global compaction [3], too.

Heuristic approaches (e.g.list scheduling) are typically used
for basic block scheduling. Heuristics have to be adapted for spe-
cific combinations of problem and architecture targeted.

Genetic algorithms (GAs) allow a more general approach to
the scheduling problem. In [5] GAs were applied to the scheduling
problem and also used to drive the heuristics of a list scheduler.
GAs have been successfully applied to find optimized sequential
schedules in [4].

In this paper, we use GAs to directly search for highly compact
schedules without operating on ordered sequences. Our new ap-
proach parameterizes the scheduling problem in terms of schedul-
ing times of the operations. The search space is reduced by a prun-
ing technique which only removes invalid schedules. The global

This work has been supported byÖNB grant 6867.

search behavior and the flexibility of GAs make them suitable to
solve this problem.

We first describe the parameterization of the scheduling prob-
lem in the context of the GA. The pruning technique that signifi-
cantly reduces the search space complexity is explained in detail.
We discuss the main parts of our GA. Adaptation to different tar-
get architectures is achieved by modifying thefitness function. We
devisedguided genetic operators to increase the rate of conver-
gence by reducing randomness in the search process. Operation
scheduling and register allocation are strongly interdependent. We
show that our approach is also applicable to the problem of regis-
ter allocation. Finally, typical experimental results are presented
to illustrate the performance of our GA.

2. GENETIC ALGORITHM

Genetic algorithms (GAs) were introduced by [6] and are an ef-
fective method to solve complex optimization problems. They are
based on evolution in the biological sense and operate on a set
of strings (chromosomes) the so-called population. A string rep-
resents a possible solution1 for the parameters of the scheduling
problem. New solutions (children) are generated using crossover
and mutation operators. The chromosomes are rated using afitness
function. The members of the next generation are chosen based on
the fitness.

GAs are well suited to the scheduling problem [5, 4] because
of the global search behavior and the flexibility of the fitness func-
tion.

2.1. Operation scheduling

Data dependencies between operations in a program can be rep-
resented by a directed acyclic graph, the data dependence graph
(DDG) G(V;E). Each nodeni 2 V; i = 1 : : : N corresponds to
anelementaryoperation.2 Each edgee 2 E corresponds to a data
dependency constraint. We distinguish two kinds of constraints
(compare [4]):before- andafter-constraints. Suppose two nodes
ni andnj . If nj has to be scheduled at leastda cycles afterni,
then there is an after-constraint between the two nodes

t(nj) � t(ni) + da: (1)

If the latest possible time to schedulenj is db cycles afterni then
we say there is a before-constraint between the two nodes

t(nj) � t(ni) + db: (2)

1A string in the population not necessarily corresponds to a valid sched-
ule. So we distinguish between solutions andvalid solutions.

2An elementary operation is an operation that can be evaluated by at
least one of the functional units.



1 2

4

5 7 8

9

12 13

11 10

3

6

D D

c3 c4 c5

x0 x1z0 z1

x

y

c1 c2

Figure 1: Second order lattice filter.

yx

1

3

x0
4

z0

z1

x1 5 9c1
2

c2
7

c3
6

c4 11

c5 10

8

12

13

Figure 2: Data dependency graph of the lattice filter.

So each edge of the DDG is associated with two weightsda anddb.
The concept of weighted constraints enables us to take pipeline ef-
fects into account where there has to be a minimum delay between
certain operations (e.g. write operations and consecutive read op-
erations accessing the same memory location).

For the following discussion we consider the second order lat-
tice filter in Figure 1. The operations are labeled with node num-
bers which are used in the corresponding DDG in Figure 2. All
edges have equal weights:da = 1 anddb =1.

The scheduling problem is to assign a timet(n) to each node
n 2 V . Thereby it has to be taken into account that no data de-
pendence constraint is violated and that in every cycleti there are
sufficient functional units so that all nodesni 2 V jt(ni) = ti can
be evaluated.

We do position pruningsimilar to [4] to reduce the search
space. For each nodeni, theas-soon-as-possiblets(ni) andas-
late-as-possibletl(ni) scheduling times are determined [7]. This
information can be represented by apruning matrix

P = (Pij) =
n

1 for ts(nj) � i � tl(nj)
0 otherwise:

(3)

The number of rows ofP defines the length of the schedule.
Note that in our approach we do not start with an initial sequen-
tial schedule which we then try to compact. The total length of
the schedule is selected first and then we attempt to find a valid
schedule of that length. So we start to look at the most com-
pact (parallelized) schedules first. The great advantage of this ap-
proach is the minimization of the search space complexity. The
lower bound of the length of the schedule is defined by the length
of the critical path (CP),lbg = length(CP). The problem of
finding a valid schedule of lengthlbg has minimum search space
complexity. For the lattice filter in Figure 1, the nodesni; i =
f1; 2; 3; 5; 7; 9; 11; 12; 13g belong to the critical path of length
9. If no assumptions concerning the possible scheduling inter-
val for each node are made, a valid solution must be found out

t n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13

1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 1 0 0 0 0 0 0 0 0 0
4 0 0 0 1 1 1 0 0 0 0 0 0 0
5 0 0 0 1 0 1 1 0 0 0 0 0 0
6 0 0 0 1 0 1 0 1 1 0 0 0 0
7 0 0 0 0 0 1 0 1 0 1 1 0 0
8 0 0 0 0 0 0 0 0 0 1 0 1 0
9 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 1: Pruning matrix for the lattice filter.

of 913 � 3 � 1012 possible schedules. Computing theas-soon-as-
possibleandas-late-as-possiblescheduling times allows to con-
struct the pruning matrix in Table 1. If position pruning is applied,
just 64 possible schedules remain.

The existence of a valid schedule of given length depends on
the functional units provided by a specific architecture. IfN op-
erations have to be scheduled onm functional units, then a lower
bound for the length of a possible schedule is given bylba =

�
N
m

�
.

The maximum oflbg andlba defines the minimal number of
rows for the pruning matrixP.

As we consider the general case of an architecture which of-
fers a set of heterogeneous functional units, it cannot be guaran-
teed that a valid schedule of this length exists. In the case that the
genetic algorithm does not find a valid solution the following two
strategies may be applied:

1. Increase the length of the schedule and start the GA again
(iterativeapproach).

2. Resolve violations of constraints by inserting additional cy-
cles where needed (direct approach).

Thedirect approach may be very inefficient if many conflicts have
to be resolved. So this approach is applicable if only a few con-
straints are violated. However, in this case a valid schedule can
be found easily without solving the entire problem again. If many
constraints are violated, the iterative approach is likely to find a
better solution but the problem gets harder as the complexity of
the search space increases.

2.1.1. Fitness Function

A solution of the scheduling problem is represented as a vector
s = (s1; s2; : : : ; sN )T wheresi = t(ni) represents the schedul-
ing time of nodeni.

The fitness function has to take into account both data de-
pendence constraints and resource constraints. For solutions, a
cost value is associated with elementsi if any constraint of the
corresponding node is violated . So we maintain a cost vector
c = (c1; c2; : : : ; cN )T where the elementci represents the cost
value associated with nodeni.

In relation to the data dependence constraints, each edge in the
DDG has to be examined. Is there an edge between nodesni and
nj , then the resulting costs are given by

ci = cj = (si � sj + da)� (si � sj + da)

+ (sj � si � db)� (sj � si � db) ; (4)

where�(x) = 1

2
(1+ sign(x)) is the Heaviside function. The cost

function in (4) judges the violation of a data dependence constraint



not only qualitatively but also quantifies the degree of violation.3

Additional costs accrue if there are resource conflicts. For all
scheduling times, the cost value of those nodes is increased that
cannot be scheduled at that time due to an insufficient number of
functional units. As we consider in our approach a set of hetero-
geneous functional units, each operation has to be classified and
possible parallel combinations of classes have to be specified. A
class of an operation is not necessarily associated with a functional
unit. Consider we have two unrelated functional units: one ALU
and one MAC unit. Assume that the MAC unit can perform ADD
and SUB instructions too. So we need three classes to define the
multifunction-instruction set. The first class contains all ALU in-
structions except ADD and SUB. The second class contains the
MAC instructions (without ADD and SUB) and the third class
consists only of addition and subtraction. In table 2, the possi-
ble parallel combinations of these three classes are shown. At a

class 1 class 2 class 3

combination 1: 1 1 0
combination 2: 1 0 1
combination 3: 0 1 1
combination 4: 0 0 2

Table 2: Parallel combinations of instruction classes.

given time, the number of required functional units for each class
has to be compared with all combinations the architecture offers.
The combination which contributes the least overall costs is used
to compute the additional costs. Assume at a specific time two
ADD/SUB operations are needed. In this case, combination 4 in
Table 2 is used and the resulting costs are zero. If two ALU op-
erations are needed combination 1 or combination 2 can be used.
Both result in a cost value of 1 for all nodes that belong to class
ALU. If combination 3 or combination 4 is used, then the cost
value would be 2 because the cost value for all nodes of a certain
class is computed as the difference between the number of needed
resources and available resources. That is, also in the case of re-
source constraints, the degree of violation is quantified.

The overall costs of a solutions are the sum of the cost values
associated with the nodes:

PN

i=1
ci. The fitness of a solution is

given by the negative cost value (plus a certain offset to yield a
positive fitness).

2.1.2. Genetic Operators

The basic operators in GAs are crossover and mutation. The proper
choice of these operators determines the performance for a certain
problem. In [5], crossover operators that emphasize order were
found to perform best for scheduling problems.

We implementedorder-based[5], position-based[5] and ex-
change[4] crossover. The best results we obtained with theex-
changeoperator which is shown in Figure 3.

In this example the number of nodes isN = 7. The starting
point of the crossover is node number 4. To generate child 1 first
the scheduling time for node number 4 of parent 1 is changed from
5 to 1. Then parent 2 is searched for a node with scheduling time
5.4 This is node number 6. Now the scheduling time for this node
of parent 1 is changed from 6 to 5. Then parent 2 is searched for

3The degree of violation is the distance from the allowed region as de-
fined in (1) and (2).

4If more than one node with scheduling time 5 exists the first one found
is taken.

6 65 12 422 22

65112 4

4 56 2 5 1 46 11 5 62

2 1 1 4 5 6

3 26 15 463

4 4

4

parent 1

parent 2

child 1

parent 1

parent 2

child 2

Figure 3: Exchange crossover.

an node with scheduling time 6 and so on. Child 2 is based on
parent 2 and so at the beginning of the crossover the scheduling
time for node number 4 is changed from 1 to 5. Then parent 1
is searched for a node with scheduling time 1 and so on. The
exchange crossover stops if a node is found which already has been
modified or a specific scheduling time can’t be found in the other
parent. We also use the information from the fitness function to
perform the crossover. As the starting point of the crossover, we
choose the node with the highest associated costs.

For mutation we use a kind ofguidedmutation. Again we
take the node with the highest costs and assign randomly another
scheduling time (within the corresponding pruned interval). In ad-
dition, a second randomly chosen node is treated accordingly. We
also use a variable mutation rate. When the average cost of all so-
lutions in the population comes closer to the minimum cost value
in the population, the mutation rate is increased accordingly.

2.2. Register Allocation

The problem is to allocate a register for the output of each node.
So the structure is similar to the scheduling problem – instead
of scheduling times, valid registers have to be found. Also the
concept of the pruning matrix is applicable. If for instance cer-
tain functional units require a special subset of registers for in-
put/output, then the number of possible register allocations is re-
duced.

A major advantage of GAs is the flexibility of the fitness func-
tion. Constraints concerning heterogeneous register sets can be
easily taken into account.

3. EXPERIMENTAL RESULTS

We used the proposed genetic approach to find a valid schedule
for the lattice filter in Figure 1. To increase the complexity of the
example, we unfolded the filter loop four times. This results in
a scheduling problem for 52 nodes and a critical path of length
27. Position pruning reduces the search space from3 � 1074 to
6 � 1023 possible solutions. We assumed an architecture that pro-
vides two homogeneous functional units (two arbitrary operations
can be performed at the same time). In that case, it can be shown
that no valid schedule of length 27 exists – a minimum of 28 cy-
cles is required. We start to find a schedule of length 27 and so a
minimum cost value of 1 must be expected.

The population consists of 50 solutions and is randomly ini-
tialized. Out of this population, 100 children are generated using



t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

t=20

t=21

t=22

t=23

t=24

t=25

t=26

t=27

loop iteration 1

loop iteration 2

loop iteration 3

loop iteration 4

1

2

3 4

5

8

67

12

9

10

18

22

11

14

17

13

19

15

16

21

20

25

23

24

31

35

27

30

26

45

28

29

34

32

33

38

42

36

44

48

37 40

43

39

41

47

46

51

49 50

52

Figure 4: Solution with cost value 1.

roulette wheel parent selection.5 Then from the resulting 150 so-
lutions, the 50 best are chosen to form the next generation. The
average performance of 10 independent invocations of the GA is
shown in Figure 5. It can be seen that in the beginning the costs
are reduced very quickly. This means, if less generations are com-
puted, the result still will be relatively good. In nine of ten runs,
the GA ends up with cost value 1 solutions. A particular result
is shown in Figure 4. This cost value reflects the fact that two
multiplications and one addition should be performed in parallel
at t = 19. As this is not possible with the assumed architecture,
one of the three nodes (n40) has a cost value of 1. However, a

5Roulette wheel parent selection means that a solution is chosen as one
of the parents according to its relative fitness value in the population.

0
5

10
15
20
25
30
35
40
45

1 10 100 1000

co
st

s

Nr. of generations

population: 50, children: 100

minimum
average

Figure 5: Average convergence performance of the GA.

valid schedule can be easily found using thedirect approach (see
section 2.1). An additional cycle is inserted immediately after the
scheduling timet = 19 for noden40. So a schedule of length 28 is
found which is optimal for this example as we mentioned before.
But in fact not only one valid schedule but 50 valid schedules are
found since each member of the corresponding population has a
cost value of 1 after 480 generations. To maintain variety we en-
sure all solutions in the population to be different. Therefore 50
valid schedules can be generated.

4. CONCLUSIONS

A new genetic algorithm approach for the scheduling problem with
parallel functional units has been presented. Minimizing the num-
ber of search space points and using guided genetic operators allow
to realize a fast converging algorithm that handles both scheduling
and register allocation.

5. REFERENCES

[1] P. Faraboschi, G. Desoli, and J.A. Fisher, “The latest word in
digital and media processing”,IEEE Signal Processing Mag-
azine, March 1998.

[2] D. Landskov, S. Davidson, B. Shriver, and P. W. Mallett, “Lo-
cal microcode compaction techniques”,ACM Computing Sur-
veys, vol. 12, pp. 261–294, September 1980.

[3] J. A. Fisher, “Trace scheduling: a technique for global mi-
crocode compaction”,IEEE Transactions on Computers, vol.
C-30, pp. 478–490, July 1981.

[4] T. Chung, CHARTS: A compiler for hard real-time systems,
PhD thesis, Purdue University, August 1995.

[5] S.J. Beaty,Instruction Scheduling Using Genetic Algorithms,
PhD thesis, Department of Mechanical Engineering, Colorado
State University, Fort Collins, Colorado 80523, October 1991.

[6] J. Holland,Adaptation in Natural and Artificial Systems, PhD
thesis, University of Michigan, Ann Arbor, MI, 1975.

[7] R. E. Chrochiere and A. V. Oppenheim, “Analysis of linear
digital networks”,Proceedings of the IEEE, vol. 63, pp. 581–
595, April 1975.


