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Abstract: In this paper, a robust M-estimate adaptive filter for
impulse noise suppression is proposed. The objective function
used is based on a robust M-estimate. It has the ability to
ignore or down weight large signal error when certain
thresholds are exceeded. A systematic method for estimating
such thresholds is also proposed. An advantage of the
proposed method is that its solution is governed by a system of
linear equation. Therefore, fast adaptation algorithms for
traditional linear adaptive filters can be applied. In particular, a
M-estimate recursive least square (M-RLS) adaptive algorithm
is studied in detail.  Simulation results show that it is more
robust against individual and consecutive impulse noise than
the MN-LMS and the N-RLS algorithms.  It also has fast
convergence speed and a low steady state error similar to its
RLS counterpart.

I. Introduction

Recently, there are considerable interests in studying
adaptive filtering algorithms that are robust to impulse noise
and interferences.  Such impulse noise can be due to natural or
man-made electromagnetic sources [1]. Under this adverse
condition, the performance of the linear adaptive filters can
deteriorate significantly. Nonlinear techniques are often
employed to reduce these adverse effects of the impulse noise.
For example, median filtering has been applied in the LMS
algorithm to protect the filter weights from the effects of
impulsive noise [11]. Another class of nonlinear technique is
to smooth out the momentary fluctuation of the error signal in
conventional adaptive filters by means of some nonlinear
clipping functions. These include the nonlinear LMS algorithm
(N-LMS) and the nonlinear recursive least squares algorithm
(N-RLS) proposed in [6] and [7], respectively.  A mixed-norm
adaptive filter using a combination of 1L  and 2L  norm as the

objective function has also been proposed recently [2,3,4].
Using the stochastic gradient method, an algorithm similar to a
combination of the Least Mean Square (LMS) and the Least
Absolute Difference (LAD) algorithms, called the mixed-norm
LMS algorithm (MN-LMS), is obtained. The method is further
extended to study the system identification problem in the
presence of impulsive noise or noise with heavy tailed
distribution. This algorithm is robust against the impulse noise
occurred in the desired signal [2]. However, due to the LMS
nature of the algorithm, it usually suffers from slow
convergence speed when the input is coloured.

In this paper, a new adaptive filter using the robust M-
estimate as the objective function is proposed. M-estimate, like
the median, belongs to the general class of robust statistical

estimates, which are designed to perform robust estimation
under model mismatch or the presence of outliners. A block-
based  adaptive filter based on the Huber M-estimate objective
function has previously been proposed in [10].  The Huber
measure uses the 2L  norm when the signal error is smaller

than a certain threshold and the 1L  norm when the error signal

is large.  The adaptive filter down-weights the outliners and
behaves like a least squares filter on impulse free condition.
The M-estimate proposed in this paper is differed from the
Huber estimate in that the error will be completely ignored if
the signal error is larger than certain threshold. A systematic
method for estimating such thresholds is also proposed. The
solution is governed by a system of linear equation similar to
the conventional normal equation. Using this M-estimate
normal equation, it is possible to derive different fast
adaptation algorithms as in the traditional linear adaptive
filters. In particular, a M-estimate recursive least square (M-
RLS) adaptive algorithm is proposed. Simulation results show
that the proposed M-RLS algorithm in this paper is more
robust against individual and consecutive impulse noise than
the MN-LMS and the N-RLS algorithms.  It also has a low
steady state error similar to the RLS algorithm.

II. Overview

Fig.1 shows the block diagram of a FIR adaptive filter
being used in a system identification setting. )(nx and )(ny

are, respectively, the input and output of the unknown system.
The output of the adaptive filter is given by

)()()(ˆ nnny T Xw= . (1)

where, T
L nwnwn )](),...,([)( 10 −=w ,and TLnxnxn )]1(),...,([)( +−=x

are the weight and signal vectors, respectively. )(nd  is the
desired signal and is assumed to be corrupted with additive
Gaussian noise, and probably impulse noise. The problem is to
identify the coefficients of the unknown system by minimizing
certain objective function or distortion measure. In the
conventional least squares adaptive filter, the exponentially
weighted square error is used as the cost function,
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where, 10 ≤< λ  is the forgetting factor, and
)(ˆ)()( nyndne −=  is the instantaneous error. Differentiating

(2) with respect to )(nw  and setting the derivative to zero, one
gets the normal equation,
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)()()( Xr λ  is the cross-correlation vector.

Well-known techniques for solving (3) include the recursively
least square (RLS) algorithm and its various extensions [5]. In
practical situations, )(ny  or )(nx  may be corrupted by
additive noise whose nature is impulsive. In this case, )(nR

and/or )(nr , )(ne  and hence )(ˆ nw , will exhibit momentary
fluctuation which might take many iterations to recover,
affecting the convergence performance of the adaptive filter.

In the non-linear recursive least square algorithm (N-
RLS) [7], a non-linear clipping function, )(⋅cf , is applied to

)(ne  to reduce its influence if )(ne  is large. More specifically,
the coefficient update equation is,
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vector. The parameter, h , is estimated from the variance as
follows,

 ),(ˆ24.2 nh eσ=
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In the mixed-norm LMS (MN-LMS) algorithm, the
weight vector is updated to minimize a combination of the 1L

and 2L  norm of the error [2],

)()}(())(1()()({)1(ˆ)(ˆ nXnesignnnennn λλµ −++−= ww  (6)

where, µ  is the step-size and )(nλ  is a mixing parameter that
determines the relative importance of the two distortion
measures. In the presence of the impulsive noise, )(ne  will be
very large and the weighting of the 2L  norm will be decreased

to minimize the adverse effects of the noise pulses. On the
other hand, the weighting of the 2L  norm will dominate in the

noise free case to reduce the steady state error. Assuming that
)(ne  is Gaussian, )(nλ  can be estimated as [2],

 ))(ˆ)((2)( nneerfcn eσλ = . (7)

where (.)erfc  is the complementary error function. Here, the

robust estimate of the error signal variance )(ˆ neσ  can be

calculated as )3()()()(ˆ −= σσ Nnnn T
e AOO , where

)0,1,,1,1,0( �diag=A  is the diagonal trimming matrix,
)]1(,),([)( +−= σNnenesortn �O , and ][�sort  is the operator

that rearranges the components in the square bracket in
ascending order. The limitations of this algorithm are the slow
convergence speed of the LMS-type algorithm and the
increased steady-error, due to the use of the mixed-norm.

III. Robust M-estimate RLS Algorithm

The M-estimator proposed in this paper is given by,
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The objective function is,
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As shown in Fig. 2, )(⋅ρ  is an even real-valued function. It is

quadratic when )(ie  is smaller than ξ . For values of )(ie  in

the interval [ ]∆,ξ , the function is linear. For values of )(ie

greater than ∆ , the function is equal to a constant, 2/2∆=c .
It becomes apparent that the M-estimator is capable of
suppressing outliers with large amplitude. Parameters ξ  and
∆  control the degree of suppression of the outliers. They are
usually chosen according to the applications or estimated
continuously. )(nJ , as defined as (9), helps to smooth out
momentary fluctuation due to impulsive interferences and
model mismatches. Using (8), (9) can also be rewritten as,
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Due to the nonlinear function, (10) will have multiple solutions
but they are close to each other. Differentiating both sides of
(10) and setting )()( nwnJ k∂∂  to zero, one gets the following,
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or in matrix form,

)()(~)( nnn NN rwR = . (12)

 (12), which is referred to as the M-estimate normal equation
here, can be viewed as the counterpart of the normal equation
(3). Since (12) is linear, traditional adaptive filtering
algorithms such as the recursive least square algorithm (RLS)
can be used to solve (12) by properly updating )(nNR  and

)(nNr . Depending on the values of )(ie , there are three

different cases for updating )(nNR and  )(nNr , as suggested by

(11).

Case 1: ξ≤)(ne . In this case, the error function is quadratic

and the update equation is similar to the conventional RLS
algorithm.

)()()1()( nnnn T
NN XXRR +−= λ  (13)

)()()1()( nndnn NN Xrr +−= λ (14)

It is natural to use fast adaptive algorithms to update the filter
weight recursively. Here, the conventional RLSA is adopted
for its fast convergence speed.



Case 2: ∆≤< )(neξ . Here, the 1L  norm of the error is used.

)(nNR  remains unchanged, )1()( −= nn NN RR , and the cross

correlation vector is updated as follows,

)())(sgn()1()( nnenn NN Xrr ξ+−= (15)

Since )(nNR  is unchanged, the inverse in the previous

iteration can be used to update the new weight vector,

)()1()(~ 1 nnn NN rRw −= − . (16)

Case 3: ∆>)(ne . In this case, the error will be completely

ignored and updating is not necessary.

)1()( −= nn NN RR , )1()( −= nn NN rr , )1(~)(~ −= nn ww . (17)

The remaining problem is to estimate the parameters ξ
and ∆ . We first compute the probability of )(ne  greater than
a given threshold T. Though the distribution of )(ne  is
unknown, it is assumed to be Gaussian distributed when there
is no outlier, so that,
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where )(⋅erf  is the error function, and )(ˆ 2 neσ  is the estimated

variance. The probability of )(ne  greater than ξ  and ∆  are
therefore ξθ  and ∆θ , respectively. By appropriate choice of

ξθ  and ∆θ , the values of ξ  and ∆  can be determined. In this

work, ξθ  and ∆θ  are chosen as 0.2 and 0.1, respectively, so

that we have 80% confident to down weight the error in the
interval [ ]∆,ξ  and 90% confident to reject it completely when

∆>)(ne . The traditional estimate of 2ˆ
eσ  can be computed by

the second equation in (5), which is however not robust in
impulse noise environment because the impulses can increase
the variance of the error signal and hence the value of ξ  and
∆ . Therefore the impulsive noise cannot be removed by the
nonlinear function, )(⋅ρ . Here, 2ˆ

eσ  is estimated by [11]
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where )(nTMAD  is the median absolute deviation from the
median (MAD) of the block data in the data window with
length σN  and (.)med  is the median operator.

VI. Simulation Results

In order to evaluate the performance of the proposed M-
RLS algorithm, simulation is performed on the system
identification problem as shown in Fig.1. The unknown system
is modelled as a FIR filter with impulsive response [0.2,-
0.4,0.6,-0.8,1,-0.8,0.6,-0.4,0.2]. The adaptive filter is assumed
to have the same length as the unknown system, i.e. 9=L .
The window length σN  is chosen as L  in our simulation. The

input signal is a coloured signal generated by passing a zero-
mean white Guassian process through a linear time-invariant

filter with coefficients ])2(2cos(1[*5. fk wkf −+= π , 3,2,1=k  [5].

fw  is chosen to be 3.5 and the eigenvalues spread of the

correlation matrix R  is approximately 46.8. The additive
noise )(nn  is assumed to be Gaussian with zero-mean and

variance 2
nσ . The signal to noise ratio at the system output is

given by )/(10log20 22
nySNR σσ= , where 2

yσ  is the variance of

the output of the unknown system. The impulses are generated
from the same multiplication model proposed in [2]. The
initial weights of the adaptive filter are set to zeros and the
SNR is dB50 . The normalised square norm of the weight
error vector, (NSWE), is given by,
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which is used as a measure of the convergence performance.
Here, *

iw  is the ith  coefficient of the unknown system and

)(ˆ nwi  is its estimate at time instant n . In our experiments, the

NSWE is obtained by averaging 20 independent runs.

Example 1

This simulation is set up to compare the convergence
performance of the M-RLS, RLS, N-RLS and MN-LMS
algorithms. The impulses are generated with arrival probability

210−≈par  and variance 200)( ≈nA . The desired signal )(nd

is shown in Fig.3a where impulses appear at
420,330,250,150=n . λ  and eλ  are chosen to be 0.99. For N-

RLS, the scalar parameter, h, is estimated as in (5). For MN-
LMS, the step-size, µ , is set to 0.025 and the mixing
parameter, )(nλ , is estimated as in (7). The NSWE results are
plotted in Fig.4. It can be seen that for 149:1=n , the
convergence of the M-RLS, N-RLS and RLS are  identical
with the same adaptation process. When impulsive noise is
present in the desired signal, the convergence of the RLS is
significantly affected, showing its sensitivity in impulse noise
environment. The MN-LMS is able to suppress the impulses
but its convergence speed is much slower than the other three
algorithms. Both the M-RLS and the N-RLS algorithms are
able to robustly identify the unknown system with comparable
convergence performance.

 Example 2

This simulation is specifically performed to investigate
the performance of these algorithms when successive impulses
appear in the desired signal for the same system identification
problem. The impulses are generated with arrival probability

210*2 −≈par  and variance 200)( ≈nA . The desired signal )(nd

is plotted in Fig.3b where impulses appear at 420,330,250=n

and 156,155,153,151,150=n . All other parameters are identical
to example 1. The NSWE results are plotted in Fig.5.
Comparing Fig.5 and Fig.4, it can be concluded that



successive impulses have nearly no influence on the
convergence performance of the M-RLS. On the other hand,
the convergence performance of N-RLS is degraded even
though it can suppress individual impulses occurred at

420,330,250=n . The performance of the MN-LMS is slightly
impaired. It can be concluded that the proposed M-RLS
algorithm can provide robust identification of the unknown
system even in the presence of consecutive impulses.  It also
shares the fast convergence speed and the low steady-state
error of RLS-type algorithms.

V. Conclusion

In this paper, a robust M-estimate adaptive filter for
impulse noise suppression is presented. The objective function
used is based on a robust M-estimate. It has the ability to
ignore or down weight large signal error when certain
thresholds are exceeded. A systematic method for estimating
such thresholds is also proposed. An advantage of the
proposed method is that its solution is governed by a system of
linear equation. Therefore, fast adaptation algorithms for
traditional linear adaptive filters can be applied. In particular, a
M-estimate recursive least square (M-RLS) adaptive algorithm
is studied in detail. Simulation studies demonstrate that the
proposed algorithm can provide robust identification of the
unknown system and fast convergence speed in individual and
consecutive impulse noise environment.
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