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ABSTRACT

In this paper, we propose a novel sequential algorithm for training
neural networks in non-stationary environments. The approach is
based on a Monte Carlo method known as the sampling-importance
resampling simulation algorithm. We derive our algorithm using a
Bayesian framework, which allows us to learn the probability den-
sity functions of the network weights and outputs. Consequently, it
is possible to compute various statistical estimates including cen-
troids, modes, confidence intervals and kurtosis. The algorithm
performs a global search for minima in parameter space by moni-
toring the errors and gradients at several points in the error surface.
This global optimisation strategy is shown to perform better than
local optimisation paradigms such as the extended Kalman filter.

1. INTRODUCTION

Sequential training methods are important in many applications of
neural networks involving real-time signal processing, where data
arrival is inherently sequential. In addition, it is often convenient
to adopt a sequential training strategy to deal with non-stationarity
in signals, so that information from the recent past is given greater
weighting than information from the distant past. One way to se-
quentially estimate neural network models is to use a state space
formulation and the extended Kalman filter (EKF) [3, 8]. This
involves local linearisation of the output equation, which can be
easily performed, since we only need the derivatives of the output
with respect to the unknown parameters. This approach has been
employed by several authors, including ourselves. Recently, we
demonstrated a number of advanced ideas in this context, using a
hierarchical Bayesian framework [2]. In particular, we proposed
ways of tuning the noise processes to achieve regularisation in se-
quential learning tasks. However, local linearisation leading to the
EKF algorithm is a gross simplification of the probability densities
involved.

In recent years, many researchers in the the statistical and sig-
nal processing communities have suggested the use of sequential
Monte Carlo estimation methods. These methods provide a com-
plete description of the probability distributions involved in the es-
timation process and tend to improve the accuracy of the analysis.
Typical sequential Monte Carlo methods are often based on the
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sampling-importance resampling (SIR) algorithm [13]. The meth-
ods have been applied to a wide range of problems, including tar-
get tracking [6, 7], financial analysis [11], diagnostic measures of
fit [11], sequential imputation in missing data problems [9], blind
deconvolution [10] and medical prognosis [1].

In this paper we propose a hybrid sequential SIR technique,
where each sampling trajectory is updated by an EKF, to train
neural network models. The method may be viewed as a global
optimisation training strategy, whereby we make use of the errors
and gradients at several positions in the error surface to update the
network weights. It may also be viewed as an integration prob-
lem within a Bayesian framework. One of the advantages of the
method is that it allows us to compute the distributions of the net-
works outputs and weights. Consequently, we can generate several
types of statistical estimates, including modes, centroids, confi-
dence intervals, error bars, kurtosis, etc.

2. STATE SPACE BAYESIAN INFERENCE

As in our previous work, we start from a state space representation
to model the neural network’s evolution in time:

wk+1 = wk + dk (1)

yk = g(wk;xk) + vk (2)

where (yk 2 <m) denotes the output measurements, (xk 2 <d)
the input measurements and (wk 2 <q) the neural network weights.
The measurements nonlinear mappingg(:) is approximated by a
multi-layer perceptron (MLP). It is widely known that this neural
model exhibits the capacity to approximate any continuous func-
tion, to an arbitrary precision, as long as it is not restricted in size.
Nonetheless, the work may be easily extended to encompass re-
current networks [12], radial basis networks [8] and many other
approximation techniques. The measurements are assumed to be
corrupted by noisevk, which in our case we model as zero mean,
uncorrelated Gaussian noise with covarianceR.

We model the evolution of the network weights by assuming
that they depend on their previous valuewk and a stochastic com-
ponentdk. The process noisedk may represent our uncertainty
in how the parameters evolve, modelling errors or unknown inputs
such as target manoeuvres. We assume the process noise to be a
zero mean, uncorrelated Gaussian process with covarianceQ. In
Section 3, we propose that this random walk model can be im-
proved by incorporating gradient information.

The noise terms are assumed to be uncorrelated with the net-
work weights and the initial conditions. Further, we assume the
evolution of the states (network weights) to correspond to a Markov



process with initial probability p(w0) and transition probability
p(wkjwk�1). The observations are assumed to be conditionally
independent given the states. These are standard assumptions in a
large class of tracking and time series problems.

From a Bayesian perspective, the posterior density p(WkjYk),
whereYk = fy1; y2; � � � ; ykg andWk = fw1; w2; � � � ; wkg,
constitutes the complete solution to the sequential estimation prob-
lem. In many applications, it is of interest to estimate one of its
marginals, namely the filtering density p(wkjYk). If we know this
density, we can easily compute various estimates of the network
weights recursively, including centroids, modes, medians and con-
fidence intervals.

The filtering density may be estimated recursively in two stages:
prediction and update. In the prediction step, the filtering density
p(wk�1jYk�1) is propagated into the future via the transition den-
sity p(wkjwk�1) as follows:

p(wkjYk�1) =

Z
p(wkjwk�1)p(wk�1jYk�1)dwk�1 (3)

The transition density is defined in terms of the probabilistic model
governing the states’ evolution (equation (1)) and the process noise
statistics. The update stage involves the application of Bayes’ rule
when new data is observed:

p(wkjYk) =
p(ykjwk)p(wkjYk�1)

p(ykjYk�1)
(4)

The likelihood density function is defined in terms of the measure-
ments model (equation (2)).

The prediction and update strategy given by equations (3) and
(4) provides an optimal solution to the inference problem, but, un-
fortunately, it entails multi-dimensional integration. To surmount
this problem, we use Monte Carlo integration methods. In Monte
Carlo simulation, a set of weighted samples, drawn from the pos-
terior density function of the neural network weights, is used to
map the integrations, involved in the inference process, to discrete
sums. More precisely, we make use of the following Monte Carlo
approximation:

p̂(WkjYk) =
1

N

NX
i=1

�(Wk �W
(i)
k )

whereW (i)
k represents the samples used to describe the posterior

density and, as before,�(:) denotes the Dirac delta function. Con-
sequently, any expectations of the form:

E[fk(Wk)] =

Z
fk(Wk)p(WkjYk)dWk

may be approximated by the following estimate:

E[fk(Wk)] �
1

N

NX
i=1

fk(W
(i)
k )

where the samplesW (i)
k are drawn from the posterior density func-

tion. Monte Carlo sampling techniques are an improvement over
direct numerical approximation in that they automatically select
samples in regions of high probability.

We give a give a brief description of sequential Monte Carlo
methods here; a complete mathematical derivation is available in

[4]. Figure 1 shows the operation of a generic sequential Monte
Carlo method. It embraces the standard assumption that we can
sample from the priorp(w0) and evaluate the likelihoodp(ykjw

(i)
k )

of each sample. Only the fittest samples survive in the update
stage. These then proceed to be multiplied, according to their
likelihood, in the prediction stage. As mentioned earlier, the up-
date and prediction stages are governed by equations (4) and (3)
respectively. It is very instructive to approach the problem from
an optimisation perspective. Figures 2 and 3 show the windowed
global descent in the error function that is typically observed. The
diagrams shed light on the roles played by the noise covariances
R andQ. R controls the resolution of the update stage, while
Q dictates by how much the cloud of samples is expanded in the
prediction stage. This expansion allows the algorithm to explore
broader regions in parameter space.

update

w

p(y  w)

prediction

Figure 1: Prediction and update stages in the sequential sampling
process. In the update stage, the likelihood of each sample is eval-
uated. The samples are then propagated according to their likeli-
hood. The size of the black circles indicates the likelihood of a
particular sample. In the prediction stage, a process noise term is
added to the surviving samples. The samples with higher likeli-
hood are allowed to have more “children”. The end result is that
the surviving samples provide a better weighted description of the
likelihood function.

3. HYBRID SEQUENTIAL SIR

The Monte Carlo conception of optimisation relies solely on prob-
ing the error surface at several points as shown in Figures 2 and
3. It fails to embrace all the richness of information implicit in the
error surface. For instance, the method could be enhanced by eval-
uating the gradient and other higher derivatives of the error sur-
face. In order to improve sequential Monte Carlo simulation, we
are proposing a new hybrid SIR algorithm. The main feature of
the algorithm is that the samples are updated by a gradient descent
step in the prediction stage. Within this framework, we can make
use of second order statistics by implementing an EKF update:

wk+1jk = wk

Pk+1jk = P
T
k +Q

�
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Figure 2: First step of one-dimensional Monte Carlo simulation.
A prior cloud (group) of samples is used to explore a region of the
error function
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Figure 3: Second step of one-dimensional Monte Carlo simula-
tion. The regions below a threshold (the measurement noise R)
of the error function and within the width of the prior cloud of
samples determine the size of the updated clouds of samples. The
cloud’s samples are grouped in the regions of higher likelihood in
a resampling stage. Finally, the resampled clouds are expanded by
a factor determined by the process noise covariance Q.

Kk+1 = Pk+1jkGk+1[R
� +G

T
k+1Pk+1jkGk+1]

�1

wk+1 = wk+1jK +Kk+1(yk+1 � g(xk;wk+1jk))

Pk+1 = Pk+1jk �Kk+1G
T
k+1Pk+1jk

whereKk+1 is known as the Kalman gain matrix andR� andQ�

are two tuning parameters, whose roles are explained in great de-
tail in [2]. Here, it suffices to say that they control the rate of con-
vergence of the EKF algorithm and the generalisation performance
of the neural network. In the general multiple input, multiple out-
put (MIMO) case,g 2 <m is a vector function andG represents
the Jacobian matrix:

G =
@g

@w

��
(w=ŵ)

Since the EKF is a suboptimal estimator based on linearisation of
a nonlinear mapping, strictly speaking,Pk is an approximation to
the covariance matrix. In mathematical terms:

Pk � E[(wk � ŵk)
T (wk � ŵk)jYk]

The EKF step, before the resampling stage, allows us to incor-
porate the latest measurements into the prior. That is, it is equiv-
alent to using the prior p(wkjwk�1;yk) before the resampling
stage. Another advantage of this method is that the covariance of
the weights changes over time. Because the extended Kalman fil-
ter is a minimum variance estimator, the covariance of the weights
decreases with time. Consequently, as the tracking improves, the
variation of the network weights is reduced. This annealing pro-
cess improves the efficiency of the search for global minima in pa-
rameter space and reduces the variance of the estimates. It should
be pointed out that the weights need to be resampled with their
respective covariances.

The EKF updates may, unfortunately, introduce biases. That
is, the estimates will depend on a few modes of the posterior den-
sity function. However, these updates lead to a substantial reduc-
tion on computational time. One way of avoiding the bias problem
could be to define the error surface in terms of a Hamiltonian that
accounts for the approximation errors and the momentum of each
trajectory. This is the basis of the Hybrid Monte Carlo algorithm
[5]. In this algorithm, each trajectory is updated by approximating
the Hamiltonian differential equations by a leapfrog discretisation
scheme. The discretisation may, however, introduce biases.

4. EXPERIMENTS

We generated input-output data vectors from the following nonlin-
ear, non-stationary state space model:

wk+1 = 0:5xk + 25
xk

1 + x2k
+ 8 cos(1:2k) + dk

yk =
x2k
20

+ 6S(0:05k) + 3 + vk

whereS(:) represents a square wave function. We chose variances
equal to2 sin(0:1k) and 0:01 for the measurement and process
noises respectively. Subsequently, we proceeded to train an MLP
with the hybrid SIR algorithm so as to approximate the measure-
ments equation. That is, we usedxk as the network input and
yk as the network output. We chose a two-layer architecture with
10 sigmoidal hidden nodes and a linear output node. To compare
the performance of the algorithm to a standard gradient descent
method, we also trained the MLP with an EKF1. Figure 4 shows

1Further details and software are available at the following address:
http://svr-www.eng.cam.ac.uk/˜jfgf/software.html .



the Monte Carlo posterior mean and EKF estimates. The one-step-
ahead squared errors corresponding to these estimates were 53 and
71 respectively. Figure 5 shows the estimate of the output proba-
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Figure 4: Actual output data [� � �], Monte Carlo posterior mean
estimate using 50 samples [—] and EKF estimate [- -].
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Figure 5: Output probability density function.

The results clearly indicate that the hybrid SIR algorithm re-
sults in lower prediction errors than gradient descent based meth-
ods. In terms of computational speed, it took approximately1:5
seconds to process the data with the EKF, while the Monte Carlo
simulation, with 50 samples, lasted approximately200 seconds us-
ing a200MHz Pentium processor. In a recent application to finan-
cial options pricing, we also observed that the hybrid SIR method
provides better estimation results than the extended Kalman filter
[4].

5. SUMMARY

We have described a new sequential algorithm for training neural
networks that leads to improved training results. The algorithm is,
particularly, suitable to applications involving non-stationarity in
the data. Directions for further research include designing algo-
rithms to estimate the noise hyper-parameters and improving the
computational efficiency of the algorithm.
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