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ABSTRACT

Nonlinear signal processing is now well established both
in theory and applications. Nevertheless, very few tools are
available for the analysis of nonlinear systems. We intro-
duce the mutual information function (MIF) as a nonlinear
correlation function and describe the practicalities of esti-
mating it from data. Even if an estimator is consistent, it
is of great interest to check what the bias and variance are
with a �nite sample. We discuss these questions, as well
as the computational e�ciency, for two estimators. Both
algorithms are of the complexity N log2N , where N is the
sample length, but they use di�erent methods to �nd the
histogram for the estimation of the mutual information. An
e�cient implementation makes it possible to apply the al-
gorithm on real time signal processing problems where the
linear correlation analysis breaks down. Current applica-
tions are: mobile radio channels, load curve forecasting,
speech processing, nonlinear systems theory.

1. INTRODUCTION AND MOTIVATION

Most work concerning nonlinear signal processing is done
on nonlinear methods to simulate and design systems. The
analysis of nonlinear phenomena su�ers from the lack of
adequate methods. Higher order statistics are used in this
area, but apart from this there are few tools for nonlinear
analysis.

Nonlinear systems are often investigated with linear meth-
ods. Obviously, the results are restricted to the scope of the
linear theory, which may be helpful, but it withholds infor-
mation related to the nonlinear properties of the system.

Higher order statistics gain more information from the
observed nonlinear signal, but we are limited by the order of
the statistic being used. Furthermore, the higher the order,
the more restrictive become the conditions that must be
imposed for the existence of the moments.

To overcome these limitations we introduced the mutual
information function (MIF) as a nonlinear correlation func-
tion for signal processing and time series analysis [1, 2]. We
developed the MIF on the basis of the theoretical work of
Kolmogorov, Gelfand, Yaglom, Perez, Dobrushin [3] (and
references therein) and Sinai [4], as well as the practical

work of Fraser [5]. The MIF extends the correlation func-
tion, suitable for linear systems, to nonlinear systems. With
the help of the mutual information function it is possible to
calculate the maximum prediction gain for virtually every
signal [6].

Calculating the mutual information between discrete
random variables does not pose any serious problems. For
the analysis of random variables taking continuous values,
the calculation of the mutual information is quite challeng-
ing. In this paper we address the case of continuous random
variables.

2. DEMONSTRATION EXAMPLES

To show the potential capability of the MIF we consider two
simple examples. The �rst experiment is a linear channel
with an ampli�er a and white Gaussian additive noise n(t)
with variance �2n, which represents an AWGN-channel. The
source signal is a zero mean, white Gaussian signal x(t) with
the variance �2x. The received signal y(t) is

y(t) = a x(t) + n(t): (1)

Experiment 2 is similar to experiment 1 but with an
ideal AC-DC converter as nonlinear channel. The received
signal y(t) is now

y(t) = a jx(t)j+ n(t): (2)

We consider the complete channel as a black box, hence
we can investigate only x(t) and y(t). In the next section we
show that it is possible to measure the information trans-
mitted over the channel using the MIF, even if the channel
is nonlinear. The corresponding analysis using the correla-
tion function cannot detect any usable information. In this
paper we concentrate on the MIF and leave out all other
methods for nonlinear analysis.

3. THEORY

We now analyse the two channels introduced above by means
of the linear correlation and the mutual information. Let
X(t) and Y (t) be the random variables taking the values
x(t) and y(t) respectively.



For the linear channel the cross correlation function is

R(X(t); Y (t+ � )) � RX;Y (t; �) =

�
a�2x for � = 0

0 for � 6= 0
;

(3)
and the coe�cient of linear correlation is

rX;Y (t; �) =

� a�xp
a2�2x+�

2
n

for � = 0

0 for � 6= 0
: (4)

In the nonlinear case the cross correlation function is
zero for all �

RX;Y (t; �) = 0 (5)

The same applies to the coe�cient of linear correlation
rX;Y (t; �). Obviously, there is some information contained
in the input signal about the output signal. Yet, it is not
possible to detect it with the standard correlation function.
To overcome these problems we consider the mutual infor-
mation function.

De�nition 1 The mutual information function is de�ned
as

M ~X;~Y (t; �) = I( ~X(t); ~Y (t+ � )) (6)

with � 2 IR for continuous-time processes ~X and ~Y .

The right hand side of (6) is the mutual information

I( ~X; ~Y ) =

Z
� � �
Z

p(~x; ~y) log2
p(~x; ~y)

p(~x)p(~y)
d~xd~y: (7)

The mutual information measures the full dependence be-

tween the vectors of random variables ~X and ~Y , and not
only the linear component of the dependence. The func-
tions p(~x; ~y), p(~x), p(~y) are, respectively, the joint probabil-

ity density of ( ~X; ~Y ) and the marginal probability densities

of ~X and ~Y . The MIF is introduced for n-dimensional sig-
nals. In this paper, we focus on one-dimensional processes,
which is su�cient for the analysis of the two experiments
under consideration. The signals are time invariant inde-
pendent Gaussian processes. Hence, the MIF is zero for all
� except � = 0 and does not change for di�erent t.

For the linear channel, the mutual information function
can be shown to be

MX;Y (t; �) =

�
1
2
log2

a2�2x+�
2
n

�2n
for � = 0

0 for � 6= 0
: (8)

which may be written as

MX;Y (t; �) = �1

2
log2

�
1� r

2
X;Y (t; �)

�
(9)

where rX;Y (t; �) is given by (4).
For the nonlinear channel, the mutual information de-

�es any analytical calculation. However the MIF may be
reduced to a one-dimensional integral, which easily can be
evaluated numerically. The probability density function of
Y (t) can be expressed as

pY (y) =
e
�

y2

2((a�x)2+�
2
n)p

2�((a�x)2 + �2n)

erfc

 
� a�xyp

2�n
p
((a�x)2 + �2n)

!
(10)

The calculation of the MIF then reduces to

MX;Y (t; �) =

=

8<
:�

1R
�1

py(u) log2 py(u)du� 1
2
log2

�
2�e�2n

�
: � = 0

0 : � 6= 0:

The MIF tells us how much information there is in X about
Y . Some numerical values may be found in Section 5. The
MIF bears no relation to the coe�cient of linear correlation,
which is blind to nonlinearities.

4. ESTIMATION

In practice we often do not know a priori what the probabil-
ity distributions are. One is thus faced with the problem of
estimating the mutual information from data. We assume
that we have a sample of N i.i.d. observations (~x; ~y) of the

pair ( ~X; ~Y ).
It is well known in information theory that the mutual

information between two continuous random variables (or
more generally, vectors of random variables) is the limit of
the mutual information between their quantized versions.
The quantization of a random variable is obtained by par-
titioning the range, i.e. the observation space, into non-
intersecting intervals covering the whole range. For vectors
of random variables the intervals become hyper rectangles.

Partitioning both the observation space of ~X and the

observation space of ~Y induces a partition of the joint obser-

vation space of ( ~X; ~Y ), which is called a product partition.
It is simply a regular grid of hyper rectangles.

There exists, however, a far more general result, which
states that the restriction to product partitions is unnec-
essary [3]. This is very important because it allows the
construction of adaptive, i.e. data-dependent, partitions.
The product partition is built in a single step as it just in-
volves putting a regular grid over the data. Our partition
will be constructed through a multi-step procedure, i.e. a
sequences of �ner and �ner partitions. This gives us the
exibility of adapting both the location and the size of the
cells (the hyper rectangles) of the partition to the data dis-
tribution. The bene�ts of using such data-dependent par-
titions over product partitions, is a dramatic decrease in
the bias of the estimator, because the data points are used
much more e�ciently. In higher-dimensional spaces we are
thus far more able to resist the curse of dimensionality, a
well-known problem of nonparametric estimation. Another
advantage is that the multi-step procedure may be opti-
mized so as to be signi�cantly faster than the single-step
procedure.

The di�erent ways of implementing a multi-step pro-
cedure is the �rst di�erence between the two algorithms
presented below. A second di�erence is that algorithm A
stops the partitioning procedure when uniformity has been
achieved, while algorithm B does it when conditional inde-
pendence has been achieved.

4.1. Algorithms

The multi-step procedure starts with the whole n-dimensional

observation space of ( ~X; ~Y ) as a single rectangular cell.



mutual information analysis
Algorithm A Algorithm B

correlation analysis

a theory mean var bias mean var bias mean var bias
0.0 0.0 -4.01e-3 1.27e-4 -4.01e-3 0.00e+0 0.00 3.99e-15 6.47e-005 8.70e-9 6.47e-5
0.2 2.82e-2 2.55e-2 1.22e-4 -2.72e-3 2.85e-2 1.03e-5 2.13e-4 2.86e-002 7.27e-6 3.68e-4
1.0 4.99e-1 5.00e-1 2.56e-4 6.93e-4 5.00e-1 1.11e-4 6.69e-4 5.01e-001 9.91e-5 1.21e-3
5.0 2.35 2.34 3.94e-4 -6.22e-3 2.34 2.54e-4 -5.00e-3 2.35 1.94e-4 1.19e-3
10.0 3.32 3.32 3.75e-4 -8.28e-3 3.30 2.55e-4 -1.95e-2 3.33 2.00e-4 1.26e-3
100.0 6.63 6.59 6.02e-4 -4.42e-2 6.46 3.25e-4 -1.72e-1 6.64 2.01e-4 6.80e-3

Table 1: Estimated values and statistics for the mutual information of the linear channel (�x = �n = 1)

mutual information analysis
Algorithm A Algorithm B

correlation analysis

a theory mean var bias mean var bias mean var bias
0.0 0.0 -4.06e-3 1.39e-4 -4.06e-3 3.51e-6 2.47e-9 3.51e-6 7.42e-5 1.07e-8 7.42e-5
0.2 1.04e-2 6.61e-3 1.45e-4 -3.80e-3 9.87e-3 7.28e-6 -5.36e-4 7.37e-5 1.11e-8 -1.03e-2
1.0 2.21e-1 2.19e-1 2.20e-4 -2.24e-3 2.21e-1 7.87e-5 -8.33e-4 1.00e-4 2.81e-8 -2.21e-1
5.0 1.55 1.55 3.52e-4 -7.08e-3 1.55 2.32e-4 -7.19e-3 1.85e-4 1.13e-7 -1.55
10.0 2.43 2.43 3.77e-4 -6.26e-3 2.42 2.80e-4 -1.71e-2 1.98e-4 1.26e-7 -2.43
100.0 5.65 5.59 4.86e-4 -5.91e-2 5.45 3.18e-4 -1.98e-1 2.04e-4 1.30e-7 -5.65

Table 2: Estimated values and statistics for the mutual information of the nonlinear channel (�x = �n = 1)

Then the following two rules are applied recursively.

Algorithm A Algorithm B
(R1) Subpartition a cell
into 2n subcells by divid-
ing each one of its n edges
into two equidistant inter-
vals.

(R1) Subpartition a cell
into 2n subcells by divid-
ing each one of its n edges
into two equiprobable in-
tervals.

(R2) Stop the subparti-
tioning of a cell if the vec-
tors of random variables
~X and ~Y are uniformly
distributed on it.

(R2) Stop the subparti-
tioning of a cell if the vec-
tors of random variables
~X and ~Y are conditionally
independent on it.

In practice, algorithm B sorts each one of the n arrays
of data so as to speed up the division into equiprobable
intervals. Once the partitioning procedure is stopped, the
estimate of the mutual information is simply calculated as
a �nite sum over all the cells A�B of the partition, A being

a subset of the observation space of ~X and B a subset of

the observation space of ~Y ,

Î( ~X; ~Y ) =
1

N

X
A�B

N(A�B) log2
N(A�B)

N(A)N(B)
+ log2N :

(11)
Here, N(A�B) denotes the number of points (~x; ~y) falling
in the hyper rectangle A � B, N(A) the number of points
~x falling in the hyper rectangle A and N(B) the number of
points ~y falling in the hyper rectangle B.

� Algorithm A

The distribution of points, contained in the current
cube is tested, and if a uniform distribution is found,
the entire cube will be treated as a homogeneous
class. The distribution is tested using a �2 test, where
the null hypothesis is a uniform distribution of the

state vectors. For the test all possible subcubes are
considered. Then we test if the investigated distribu-
tion is uniform and therefore the estimated probabil-
ity of one subcube is compared to the test probability
pt(Ak�Bj) =

1
2n

of all possible 2n cubes. This com-

parison is done by the �2 test where

�
2 =

X
k;j

(N(Ak �Bj)�N(A�B)pt(Ak �Bj))
2

N(A�B)pt(Ak �Bj)

(12)
represents the quantity that is tested against a con�-
dential level �2�. If �

2 < �2� then the null hypothesis,
uniform distribution, holds with a error probability of
�. The values for �2� can be found in statistical tables
as in [7]. The used con�dential levels depend on the
number of investigated data. We applied an adaptive
optimization of the �2�-level for di�erent data length.
It turns out that the values for � have to vary from
20% to 34% in the two dimensional case, i.e. 1000
samples lead to � = 29%.

� Algorithm B

For testing independence on a given cell A�B a �2

test is used. For this purpose product partitions are
good enough. Let fAk � Bjg be a product partition
of the cell A�B. If the statistic

�
2 =

X
k;j

(N(Ak �Bj)�N(A�B)
N(Ak)N(Bj )

N(A)N(B)
)2

N(A�B)
N(Ak)N(Bj )

N(A)N(B)

(13)
is "small enough", then the cell A � B will not be
partitioned any further. "Small enough" means that
the critical values of the �2 test should be chosen such
that the signi�cance level of the test does not exceed
5% [2].



N number of samples
250 500 1000 10000 100000

var 3.0e-2 6.9e-3 3.2e-3 3.5e-4 2.7e-5
bias -2.46e-1 -1.3e-1 -6.5e-2 -7.1e-3 -3.4e-4

Table 3: Dependence of the variance and bias on increasing
N (Nonlinear channel with a = 5).

5. EXPERIMENTS

For the experiments we assume a very common situation in
communication engineering. The channel is unknown but
we know input and output signals. The aim of the mutual
information analysis is to investigate if the channel is able
to transmit information. With the experiments we test the
tools, if they are suitable for the analysis.

As we have shown, the parameter a of the demonstra-
tion channels a�ects the resulting correlation or mutual in-
formation value. The variation of a is used to show, if the
algorithm is able to �nd the relation between input and
output even if the parameter a is varied over a wide range.
In our experiments we used a = f0:0; 0:2; 1; 5; 10; 100g. Ad-
ditionally, the accuracy of the estimated value depends on
the number of samples N considered in the estimating pro-
cedure. Therefore we show the dependence between the
variance of the estimation error and N .

In Table 1 the results for 100 trials of the linear channel
experiment is shown. We use 10000 samples and di�erent
parameters to point out how the error variance is inuenced
by a. The linear correlation analysis is compared to the mu-
tual information analysis by the value of equation (9). On
the other hand Table 2 displays the results for the nonlin-
ear channel. As was expected, the correlation analysis is
unable to �nd the dependences and the mutual information
analysis remains correct.

Table 3 shows the dependency of the number of samples
N. As one can clearly see, the variance and the absolute
value of the bias are decreasing with N. We have shown
this dependence for just one parameter a but the others
behave similarly.

6. GUIDELINES

We presented results for Gaussian and related distributions.
Extensive simulations have shown that our partitioning esti-
mator work equally well for non-Gaussian smooth densities.
Usually, statistical estimators have di�culties with distri-
butions having fat tails or sharp discontinuities. Our par-
titioning procedure has no problem with fat tails. It does,
however, su�er when sharp discontinuities are present, in
the sense that the bias will decrease more slowly with the
sample size than for smooth densities. As far as we know,
the only densities for which our estimators will not be con-
sistent are the "exotic" densities which display symmetries
with respect to the subpartitions used in the �2 test. This
leads to a systematic underestimation of the mutual infor-
mation. Other techniques would be needed to deal with
such highly symmetric objects (should they be more than

just academic curiosities).
Purely deterministic channels are another special case.

For them the mutual information diverges to in�nity. For
a sample of N points, the estimated mutual information is
upper-bounded by log2N . Again, our estimators remain
consistent in this case.

There is a di�erence in the accuracy between the algo-
rithms. For mutual information results < 1 Algorithm B
produces less variance and bias than A. The bias for mu-
tual information results > 1 is smaller if we use algorithm
A. So it is possible to select the proper algorithm after one
�rst estimate.

Basically, our multi-step partitioning procedure has a
tree structure. With respect to other estimation techniques,
this means simplicity and speed. Indeed our estimators are
extremely fast. On an ordinary PC, calculations with sam-
ples of 10000 points as above take a fraction of a second.
The calculation time is of the order N log2N . More compli-
cated estimators, such as kernel estimators, would be unable
to compete.

7. CONCLUSION

The excellent results of the experiments demonstrate that
the transmission of information over a nonlinear channel
can be detected. This is in contrast to the failure of the
linear correlation analysis. The availability of an accurate,
precise and fast MIF estimator provides a good new tool
for nonlinear signal processing.

8. REFERENCES

[1] H.-P. Bernhard. The Mutual Information Function and
its Application to Signal Processing . Doctoral thesis,
Technische Universit�at Wien, Vienna (Austria), 1997.

[2] G.A. Darbellay. Predictability: An information-
theoretic perspective. In P.J.W. Rayner A. Proch�azka,
J. Uhl���r and N.G. Kingsbury, editors, Signal Analy-
sis and Prediction, pages 249{262. Birkh�auser, Boston,
1998.

[3] R.L. Dobrushin. General formulation of Shannon's main
theorem in information theory. Am. Math. Soc. Trans.,
33:323{438, 1959.

[4] Y.G. Sinai. Topics in Ergodic Theory. Princeton Uni-
versity Press, Princeton, New Jersy, 1994.

[5] A.M. Fraser. Information and entropy in strange at-
tractors. IEEE Transactions on Information Theory,
IT-35(2):245{262, March 1989.

[6] H.-P. Bernhard. A tight upper bound on the gain of
linear and nonlinear predictors for stationary stochas-
tic processes. IEEE Transactions on Signal Processing,
November 1998.

[7] I.N. Bronstein and K.A. Semendjajew. Taschenbuch
der Mathematik. BSB B.G. Teubner Verlagsgesellschaft,
Leipzig (Germany), 1983.


