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ABSTRACT

Prediction by kriging does not rely on any specific model
structure, and is thus much more flexible than approaches
based on parametric behavioural models. Since accurate
predictions are obtained for extremely short training sequences,
it generally performs better than prediction methods using
parametric models. Application to nonlinear system inver-
sion is considered

1. INTRODUCTION

We consider the situation where the input and output se-
quencesfxkg andfykg of a SISO nonlinear systemS are
observed on a given horizonn, and the response of the sys-
tem to future inputs must be predicted. Such a situation is
rather common, and finds applications in many signal pro-
cessing problems.

Usually, one builds an input/output model forS and uses
this model to predict its response for new values of the input.
When no prior knowledge onS is available, a behavioural
model is used.

The Volterra and Wiener functional series [6], or the
NARMAX (Nonlinear AutoRegressive Moving Average model
with eXogenous inputs) model proposed in [4], are tradi-
tional parametric representations for nonlinear systems of
unknown structure. The inclusion of information from both
lagged inputs and outputs in the NARMAX model gives a
lot of flexibility, but the choice of the characteristics of the
structure (polynomial degreeD, memory lengthsmx and
my of the input and output signals) is rather difficult. More-
over, the numberp of parameters of the model, determined
by D, mx andmy, is generally very large, which makes
their estimation difficult (long data sets are required).

The parametric approaches mentioned above rely ona
priori choices, which strongly influence the quality of the
model obtained. Kriging, which originated in geostatistics,
see e.g., [3, 2], is a statistical tool for modeling spatial ob-
servations, with or without observation errors, and does not
rely explicitly on any specific structure. To the best of our
knowledge, it has never been used in a signal processing
context to solve problems such as system inversion.

The kriging approach is described in Section 2. It can
be called semi–parametric since the model contains a linear
regression part (parametric), and a non–parametric part con-
sidered as the realization of a random process. The covari-
ance matrix of this process is parameterized and, assuming
that the process is Gaussian, the parameters of the covari-
ance are estimated by maximum likelihood. The memory
lengthmx of the input is the only important prior choice
concerning the structure, and a prior over–estimation ofmx

only results in heavier computations [1]. This makes the ap-
proach especially attractive when the structure of nonlinear
system involved is totally unknown.

2. SEMI–PARAMETRIC MODELING BY KRIGING

Let S be a system with outputy depending in an unknown
(possibly nonlinear) manner on a vectorx of inputs. Once
inputsfxkg and associated outputsfykg are observed,k =
1; : : : ; n, we predict the value of y at new unsampled values
of x, that isxn+1;xn+2; : : : , by interpolating previous data
by the best linear unbiased predictor. Note that although we
are predictingfuture responsesyn+1; yn+2; : : : , we are not
approximating a function of the time indexk from observed
values atk = 1; : : : ; n. This is crucial, since the approach
has rather badextrapolatingproperties, see, e.g., [8]. On
the other hand, prediction by kriging has niceinterpolating
properties: we only need the training samplefxk; ykg, k =
1; : : : ; n, to be representative of the data to be predicted.
Kriging then yields accurate predictions even for extremely
short training sequences, which does not seem to be the case
for neural networks.

Consider first the case of a deterministic system (no ob-
servation errors), where

yk = y(xk) = F (xk) ; (1)

with F (�) an unknown nonlinear function, andxk the vector
formed by lagged scalar inputs, that is:

xk = (xk ; xk�1; : : : ; xk�mx+1)
T :



The observationsyk are modeled by

yk = fT (xk)� + Z(xk) ; (2)

where the regressorf(xk) is function ofxk, � 2 IRp is a
vector of unknown parameters andZ(xk) is a realization of
a stochastic process.Bayesian krigingcorresponds to the
case where a prior distribution is put on�, see [5], and will
not be considered here. In practise, it is generally enough to
takef(xk) = 1 and� scalar. The processZ(�) is assumed
to have zero mean and covariance

EfZ(x)Z(x0)g =W (x;x0) :

We assume spatial stationarity, that is

W (x;x0) = V (x� x0) = �2ZR(x� x0) ;

with R(x) = R(�x). We use below

R(x� x0) = exp

 
mxX
i=1

��ijxi � x0ij

i

!
; (3)

which is typical. The functionR(:) is continuous at0, which
corresponds to a process continuous in the mean–square
sense. The case
i = 1, i = 1; : : : ;mx, corresponds to
the product of Ornstein–Uhlenbeck processes, which are
continuous but not differentiable everywhere. When
i =
2, i = 1; : : : ;mx, the process has infinitely differentiable
paths (in the mean–square sense). A classical assumption is

i 2 [1; 2], i = 1; � � � ;mx. The choice of the functional
form of the covariance is important, since it influences the
predictive capacity of the method. We found that the form
(3) allows enough flexibility through the parameters�i and

i (see [1]) and generally gives satisfactory results. Letyn
denote the vector of observations in the training sample,

yn = (y1; : : : ; yn)
T ;

and defineFn as

Fn =

0
B@

fT (x1)
...

fT (xn)

1
CA :

The predictiony(x) at a given valuex is ŷ(x) = cT (x)yn.
Minimizing the mean–square error of this linear predictor
under the unbiasedness conditionfT (x) = cT (x)Fn gives:

ŷ(x) = fT (x)�̂ + rT (x)V�1
n (yn � Fn�̂) ; (4)

whereVn = �2ZRn is the covariance matrix forZn =
(Z(x1); : : : ; Z(xn))

T , with

[Rn]ij = R(xi � xj) ; (5)

r(x) = EfZ(x)Zng, that is[r(x)]i = �2ZR(x � xi), and
where

�̂ = (FT
nR

�1
n Fn)

�1FT
nR

�1
n yn (6)

is the Least–Squares estimator for�. The mean–square er-
ror for the prediction is then

�2(x) = �2Z � [fT (x) rT (x)]

�
O FT

n

Fn Vn

��1 �
f(x)
r(x)

�
;

(7)

which satisfies�2(xk) = 0, k = 1; : : : ; n. This means
that this predictor is a perfect interpolator:̂y(xk) = yk,
k = 1; : : : ; n . Assuming a normal distribution for the pro-
cessz(x), confidence intervals can be constructed for the
prediction. For instance:

Probfy(x) 2 [ŷ(x)� 1:96�(x); ŷ(x) + 1:96�(x)]g

' 0:95 : (8)

The prediction̂y(x) depends on the parameters�i and
i of
the covariance function (3). Assuming that the stochastic
processZ(�) is Gaussian, they can be estimated by maxi-
mum likelihood, together with� and�2Z . Elementary cal-
culations give:

f�̂; 
̂g = arg min
f�2IR+mx ; 
2[1;2]mxg

[n ln(�̂2Z ) + ln det(Rn)] ;

(9)

where�̂2Z = 1
n
(yn � Fn�̂)

TR�1
n (yn � Fn�̂) and�̂ given

by (6) respectively correspond to the maximum likelihood
estimators of�2Z and�.

Assume now that

yk = F (xk) + �k ;

with f�kg an i.i.d. sequence of errors with zero mean and
variance�2� . The observations are modeled as

yk = fT (xk)� + Z(xk) + �k ; (10)

whereZ(�) is a stochastic process independent off�kg.
DefineVn = �2� In + �2ZRn, with In the n-dimensional
identity matrix andRn given by (5). The prediction atx is
then still given by (4), with now

�̂ = (FT
nV

�1
n Fn)

�1FT
nV

�1
n yn ; (11)

which coincides with (6) when�2� = 0. When�2� 6= 0, this
predictor is not a perfect interpolator: the mean–square er-
ror for the prediction is given by (7) and, in general,�2(xk) 6=
0 for k = 1; : : : ; n. Assuming that�k is normalN (0; �2� )
andZ(�) is also Gaussian, one can still use maximum like-
lihood to estimate the parameters ofR together, with�, �2Z



and�2� . Define� as� =
�2�
�2
Z

, so thatVn = �2Z(Rn+�In).

The maximum likelihood estimator of� and� is given by

f�̂; �̂; 
̂g = arg min
f�>0;�2IR+mx ;
2[1;2]mxg

[n ln(�̂2Z ) +

ln det(Rn + �In)] ; (12)

where

�̂2Z =
1

n
(yn �Fn�̂)

T (Rn + �In)
�1(yn �Fn�̂) ;

and �̂ given by (11) respectively correspond to the maxi-
mum likelihood estimators of�2Z and�.

Numerical optimization methods are required for the de-
termination of̂� and
̂ in (9), or�̂, 
̂ and�̂ in (12). Although
the problem is sometimes difficult (see e.g. [9]), numerical
simulations show that a precise determination of the esti-
mates is not necessary to get an accurate prediction, and lo-
cal optima are generally acceptable. The derivatives of the
likelihood functions in (9,12) are easily obtained, and lo-
cal search methods (conjugate gradients or quasi–Newton),
can be used efficiently. Imposing constraints on�, such
as�i � � > 0, is recommended to preserve the positive–
definite character ofRn during the optimization. Note that
the value of�i indicates the importance of theith input of
the model, so that the method permits to screen out impor-
tant input factors.

3. APPLICATION TO SYSTEM INVERSION

We consider the situation where observationsyk satisfy an
input/ouput relationship of the form

yk = '(zk) + vk

zk =

naX
i=0

aix1k�i +

nbX
i=0

bix2k�i

where'(:) is a static nonlinearity :

'(z) = 2=[1 + exp(�10z)]� 1 ; (13)

see Figure 1,fx1kg, fx2kg are input sequences andfvkg is
an i.i.d. sequenceN (0; �2v).

We assume that a training sequencefx1kg, fx2kg, fykg,
k = 1; 2; : : : ; n, is available, and we wish to invert the sys-
tem and predictx2k as a function ofyk, yk�1, : : : , x1k ,
x1k�1 , : : : for k > n. We modelx2k as

x2k = � + z(x) + "k (14)

with

x = (yk; yk�1; : : : ; yk�my+1; x1k ; x1k�1 ; : : : ; xk�mx+1) ;
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Figure 1: Static nonlinearity

Linear Volterra Kriging
-8.5 +3.2 -16.5

Table 1: Normalized mean–square errorEr (dB)

and predict̂x2k by kriging. Note that whennb > 0, large
values ofmy andmx1 may be required sincex2k , modeled
as a function ofzk andx1k , contains an autoregressive part.

The performances are evaluated in terms of the normal-
ized mean–square errorEr:

Er = 10 log
(xN2n+1 � x̂N2n+1)

T (xN2n+1 � x̂N2n+1)

(xN2n+1)
TxN2n+1

; (15)

wherexN2n+1 denotes the vector of observations(x2n+1 ; : : : ; x2N )

andx̂N2n+1 denotes the vector of predictions(x̂2n+1 ; : : : ; x̂2N ).
Table 1 corresponds to the case where�2v = 0 (no observa-
tion errors),x1k andx2k are distributedN (0; 1), �2" = 0,
n = 50,N = 250, na = nb = 2,

a = [0:08;�0:06] ;

b = [0:09;�0:02] ;

andmy = mx1 = 4. For the kriging predictor we use
f = 1, mx = my +mx1 = 8 and
i = 2, i = 1; : : : ; 8.
The results are averaged over 10 independent realisations.

The Volterra filter used for comparison is of degree 2
and contains 45 parameters to be estimated. This large num-
ber of parameters compared to the length of the training se-
quence (n = 50) explains the poor performances of this
predictor compared to the linear one, with only 9 param-
eters to be estimated. Prediction by kriging clearly out-
performs these two approaches. Note that the NARMAX
model cannot be used here, due to the short length of the
training sequence and the number of independent variables
in the model (my +mx1 = 8).

Figure 2 gives typical training sequencesfx2kg andfzkg.
Note that a large number of samples fall in the nonlinear part
of '(:).
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Figure 2: A typical training sequence

Figures 3 and 4 givêx2 as a function ofx2, k = n +
1; : : : ; N , for prediction by kriging and a linear model.
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Figure 3: kriging

4. CONCLUSIONS

Kriging seems to be an attractive method in nonlinear filter-
ing problems. The presence of a non–parametric part in the
model allows a great flexibility, and choosing the paramet-
ric part as a simple constant generally gives satisfactory re-
sults, even in situations where the model is highly nonlinear
and the training sequence is short. Inversion of a nonlinear
system has been considered, with the ouput of the system
depending on two inputs, one being known, the other to be
reconstructed. Further developments will concern extension
to multidimensional predictions, with application to simul-
taneous reconstruction of several inputs.
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Figure 4: linear model

5. REFERENCES

[1] J.-P. Costa, L. Pronzato, and E. Thierry. Nonlinear pre-
dicting by kriging, with application to noise cancella-
tion. Internal report, 1998.

[2] N. Cressie. Kriging nonstationary data.Journal of the
American Statistical Association, 81:625-634, 1986.

[3] D. Krige. A statistical approach to some mine valua-
tion and allied problems on the Witwatersrand. Master
Thesis, University of Witwatersrand, 1951.

[4] I. Leontaritis and S. Billings. Input-Output paramet-
ric models for nonlinear systems part 2 : stochastic
nonlinear systems.International Journal of Control,
41(2):329–344, 1985.

[5] R. Liebers. What can be done by Bayesian Kriging?
Tatra Mountains Mathematical Publications, 7:275–
282, 1996.

[6] W. J. Rugh.Nonlinear System Theory : The Volterra /
Wiener Approach.The Johns Hopkins University Press,
Baltimore, 1981.

[7] J. Sacks, W. Welch, T. Mitchell, and H. Wynn. Design
and analysis of computer experiments.Statistical Sci-
ence, 4(4):409–435, 1989.

[8] E. Walter and L. Pronzato.Identification of Parametric
Models from Experimental Data. Springer, Heidelberg,
1997.

[9] J. Warnes and B. Ripley. Problems with likelihood esti-
mation of covariance functions of spatial gaussian pro-
cesses.Biometrika, 74(3):640–642, 1987.


