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ABSTRACT The kriging approach is described in Section 2. It can

Prediction by kriging does not rely on any specific model be called semi—parametric since the model contains a linear
structure, and is thus much more flexible than approached©gression part (parametric), and a non—parametric part con-
based on parametric behavioural models. Since accuratsidered as the realization of a random process. The covari-
predictions are obtained for extremely short training sequencdd?ce matrix of this process is parameterized and, assuming
it generally performs better than prediction methods using that the process is Gaussian, the parameters of the covari-

parametric models. Application to nonlinear system inver- ance are estimated by maximum likelihood. The memory
sion is considered lengthm, of the input is the only important prior choice

concerning the structure, and a prior over—estimatian of
only results in heavier computations [1]. This makes the ap-
proach especially attractive when the structure of nonlinear
system involved is totally unknown.

1. INTRODUCTION

We consider the situation where the input and output se-
qguences{z; } and{y;} of a SISO nonlinear systetsi are
observed on a given horizan and the response of the sys-
tem to future inputs must be predicted. Such a situation is

rather common, and finds applications in many signal pro- . o
cessing problems. Let S be a system with output depending in an unknown

Usually, one builds an input/output model and uses (possibly nonlinear) manner on a vectoof inputs. Once

this model to predict its response for new values of the input. INPUtS{x } and associated outputg; } are observed; =

When no prior knowledge of is available, a behavioural ~ 1:--- »™» We predict the value of y at new unsampled values
model is used. of x, that isx, 1, Xp+2, - .., by interpolating previous data

The Volterra and Wiener functional series [6], or the by the best linear unbiased predictor. Note that although we
NARMAX (Nonlinear AutoRegressive Moving Average modef'® Predictinguture responseg, .1, yn+.2, . .., We are not
with eXogenous inputs) model proposed in [4], are tradi- approximating a function qf t_hetlmt_a md_dm‘rom observed
tional parametric representations for nonlinear systems ofvalues ak = 1,...,n. This is crucial, since the approach
unknown structure. The inclusion of information from both Nas rather baextrapolatingproperties, see, e.g., [8]. On
lagged inputs and outputs in the NARMAX model gives a the othgr hand, prediction by krlglpg has ningerpolating
lot of flexibility, but the choice of the characteristics of the Properties: we only need the training samfig, y. }, k =

structure (polynomial degre®, memory lengthsn, and 1, SR to b(_a representative of_th_e data to be predicted.
m,, of the input and output signals) is rather difficult. More- Kriging then yields accurate predictions even for extremely

over, the numbep of parameters of the model, determined short training sequences, which does not seem to be the case

by D, m, andm,, is generally very large, which makes Of neural networks.

their estimation difficult (long data sets are required). Consider first the case of a deterministic system (no ob-
The parametric approaches mentioned above relg on Servation errors), where

priori choices, which strongly influence the quality of the

model obtained. Kriging, which originated in geostatistics, ye = y(xx) = F(xz), (1)

see e.g., [3, 2], is a statistical tool for modeling spatial ob-

servations, with or without observation errors, and does notwith F(-) an unknown nonlinear function, arg the vector

rely explicitly on any specific structure. To the best of our formed by lagged scalar inputs, that is:

knowledge, it has never been used in a signal processing

context to solve problems such as system inversion. X, = (Tg, Tp—1,. .. ,mk,mﬁl)T

2. SEMI-PARAMETRIC MODELING BY KRIGING



The observationg,, are modeled by r(x) = E{Z(x)Z,}, thatis[r(x)]; = 0% R(x — x;), and

() (x2) where
yr = £ (xk) B + Z(xx) , 2) .
f=(F R,'F,)"'F R, 'y, (6)
where the regressdi(xy) is function ofx, 8 € IRP is a _ _
vector of unknown parameters aédx;) is a realization of i the Least-Squares estimator forThe mean-square er-
a stochastic procesBayesian krigingcorresponds to the  ror for the prediction is then
case where a prior distribution is put gnsee [5], and will Tl g
not be considered here. In practise, itis generally enough to,2 (x) = 52 — [f7 (x) r” (x)] [ O F, } [ (x) } :

takef(x;) = 1 andg scalar. The process(:) is assumed F, V, r(x)
to have zero mean and covariance (7)
E{Z(x)Z(x")} = W(x,x') . which satisfiesr?(x) = 0, K = 1,...,n. This means
that this predictor is a perfect interpolataj(x;) = y,
We assume spatial stationarity, that is k=1,...,n.Assuming a normal distribution for the pro-
) cessz(x), confidence intervals can be constructed for the
W(x,x') =V(x —x') =0z R(x - x'), prediction. For instance:
with R(x) = R(—x). We use below Prob{y(x) € [j(x) — 1.96 0(x), §(x) + 1.96 0(x)]}

R(x —x') = exp <Z —0;|x; — @}

prt The predictionj(x) depends on the parametéfsand-; of

the covariance function (3). Assuming that the stochastic
which is typical. The functio®(.) is continuous a, which processZ(-) is Gaussian, they can be estimated by maxi-
corresponds to a process continuous in the mean—squargum likelihood, together witt$ ando?,. Elementary cal-

~0.95. (8)
’Yi> , (3)

sense. Thecasg = 1,i = 1,...,m,, corresponds to  culations give:
the product of Ornstein—-Uhlenbeck processes, which are . . L
continuous but not differentiable everywhere. Whgn= 1%, 7} = arg {QEBMQIWHE[LZ]M}[” In(7) +Indet(Ry)],

2,i=1,...,m,, the process has infinitely differentiable 9)
paths (in the mean—square sense). A classical assumption is

Yi € [1, 2], =1, ,my. The choice of the functional Whereé‘-QZ = l(yn _ FnﬁA)TRr_Ll(Yn _ Fnﬁ) andﬁA given

form of the covariance is important, since it influences the by (6) respegtivew correspond to the maximum likelihood
predictive capacity of the method. We found that the form estimators ob2 andg.
(3) allows enough flexibility through the parametérsand
v; (see [1]) and generally gives satisfactory results. y,et Assume now that
denote the vector of observations in the training sample,
Yk = F(xx) + €,
Yn =, yn)"

)

with {e;} an i.i.d. sequence of errors with zero mean and
and definéF,, as variances?. The observations are modeled as

7 (x1) yr = £1(x1)B + Z(xk) + €, (10)

Fo = where Z(+) is a stochastic process independent{ef}.

7 (x,) DefineV,, = 0?1, + 0%4R,, with I, the n-dimensional
identity matrix andR.,, given by (5). The prediction at is

The predictiony(x) at a given value is §(x) = ¢’ (x)y.. then still given by (4), with now

Minimizing the mean—square error of this linear predictor
under the unbiasedness conditfdinx) = ¢’ (x)F,, gives: B=(FIVIF,) 'FIV ly,, (11)

§x) = fTx)B+r"(x)V:'(yn —FnB), (4  which coincides with (6) when? = 0. Wheno? # 0, this
predictor is not a perfect interpolator: the mean—square er-
whereV,, = o7R, is the covariance matrix foZ,, = ror for the predictionis given by (7) and, in geneesl(x; ) #
(Z(x1),-- , Z(x4))", with 0fork = 1,...,n. Assuming thaty, is normal\' (0, o2)
andZ(-) is also Gaussian, one can still use maximum like-
[Rnlij = R(xi —%;), (3)  lihood to estimate the parametersittogether, with3, o2



ando?. Definea asa = (‘:—22 sothatV,, = 0% (R, +al,).
Z
The maximum likelihood estimator of andé is given by

{4, 0,4} = ar [nln(6%) +

g min
{a>0,0c Rt™= v€[1,2]m=}
Indet(R,, + al,)], (12)

J%:E(yn_FnB)T(Rn+aIn) l(yn_Fnﬂ), -1 -08 -06 -04 -02 g 02 04 06 08 1

and 3 given by (11) respectively correspond to the maxi- Figure 1: Static nonlinearity

mum likelihood estimators of% andp.

. o ) Linear | Volterra | Kriging
Numerical optimization methods are required for the de- 85 3.2 165

termination o and4 in (9), or, 4 anda in (12). Although
the problem is sometimes difficult (see e.g. [9]), numerical
simulations show that a precise determination of the esti- Table 1: Normalized mean—square erfr(dB)
mates is not necessary to get an accurate prediction, and lo-

cal optima are generally acceptable. The derivatives of the
likelihood functions in (9,12) are easily obtained, and lo-
cal search methods (conjugate gradients or quasi—Newton)
can be used efficiently. Imposing constraints égnsuch
asf; > 6 > 0, is recommended to preserve the positive—
definite character oR,,, during the optimization. Note that

and predictt,, by kriging. Note that whem;, > 0, large

values ofm, andm,, may be required since,, , modeled

as a function ok, andz,,, contains an autoregressive part.
The performances are evaluated in terms of the normal-

ized mean—square erréf.:

the value ofd; indicates the importance of thih input of xN =% V(Y —xY )
: : E, =10 log ——+t —=ni1 "=, (15)
the model, so that the method permits to screen out impor- ~r g (xN )<Y J
. 2n41 2n+1
tant input factors.
wherexé‘fLH denotes the vector of observatidns, _,, ... ,72,)
3. APPLICATION TO SYSTEM INVERSION andx)’ ., denotes the vector of predictio(, ,,, - . . , &2, )-

Table 1 corresponds to the case whefe= 0 (no observa-
We consider the situation where observatigpssatisfy an tion errors),z;, andxz,, are distributedV'(0,1), o2 = 0,
input/ouput relationship of the form n=>50,N=250,n, =ny =2,

Yk = SO(Zk) + Vg a = [008, —006] 5
Mo b = [0.09,-0.02],
2k Z a;T1,_; + Z bimzk—i [ . ] .
=0 =0 andm, = m,, = 4. For the kriging predictor we use
f=1my =my+m, =8andy; =2,i=1,...,8.
wherep(.) is a static nonlinearity : The results are averaged over 10 independent realisations.
The Volterra filter used for comparison is of degree 2
and contains 45 parameters to be estimated. This large num-
ber of parameters compared to the length of the training se-
quence ¢ = 50) explains the poor performances of this
predictor compared to the linear one, with only 9 param-
eters to be estimated. Prediction by kriging clearly out-
performs these two approaches. Note that the NARMAX
model cannot be used here, due to the short length of the
training sequence and the number of independent variables

s, = B+ 2(x) + en (14) in the model fny + m,, = 8).

p(z) =2/[1+exp(—10z)] — 1, (13)

see Figure Yz, }, {z2, } are input sequences afdy } is
an i.i.d. sequenc&/(0,02).

We assume that a training sequekiee, }, {z2, }, {yr}
k=1,2,...,n,is available, and we wish to invert the sys-
tem and predict:,, as a function ofyg, yr—_1, ..., x1,,
Z1,u_ys ... fOr k> n. We modek,, as

with Figure 2 gives typical training sequendas, } and{z; }.
Note that a large number of samples fall in the nonlinear part
X = (yk, Ye—15-+ sYk—my+1, Tl Llj_qs5- -+ 7mk7m2+1) ) of (10()
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Figure 2: A typical training sequence

Figures 3 and 4 givé, as a function ofk,, £ = n +

Figure 4: linear model
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4. CONCLUSIONS
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