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ABSTRACT

In this paper, a new theory is developed for the fea-
ture spaces of hyperbolic tangent used as an activation
kernel for non-linear support vector machines. The the-
ory developed herein is based on the distinct features of
hyperbolic geometry, which leads to an interesting ge-
ometrical interpretation of the higher-dimensional fea-
ture spaces of neural networks using hyperbolic tangent
as the activation function. The new theory is used to
explain the separability of hyperbolic tangent kernels
where we show that the separability is possible only for
a certain class of hyperbolic kernels. Simulation results
are given supporting the separability theory developed
in this paper.

1. INTRODUCTION

The support vector machine (SVM) as a pattern classi-
�er is a recent attraction in the �eld of neural networks.
SVM is capable of �nding the optimum decision region
with a small set of training points. The SVM uses a
linear separating plane to create a pattern classi�er.
For the patterns that are non-separable in the original
space, the machine non-linearly transforms the original
input space into a higher-dimensional feature space via
a kernel K(x; xi). A support vector kernel of partic-
ular interest is the hyperbolic tangent kernel, de�ned
by tanh(akxik2 + �). However, it is known that this
class of SVM using the hyperbolic tangent kernel has
no feasible solution for many classi�cation problems [5].
The reason for this problem is not known or reported
anywhere in the literature.

In this paper we present a new theory for this class
of SVM's. In particular, we show that the feature
spaces of neural network using hyperbolic activation
functions can be studied and explained in inde�nite
metric hyperbolic spaces but not in Euclidean spaces.
The inner product de�ned in the hyperbolic spaces is
the Lorentzian inner product [2]. The Lorentzian in-
ner product leads to many new concepts, in particular,
a new concept of length with imaginary lengths being

possible. In a Hilbert space, projections always exist in
a unique way [1]. In contrast, in a hyperbolic space pro-
jections are unique if and only a certain Hessian matrix
is non-singular. In a Hilbert space, a quadratic form
always has minima or maxima, whereas in a hyperbolic
space the quadratic form always has stationary points
and further conditions must be met for a stationary
point to be a minimum, maximum or a saddle point.
The additional conditions are explained by using ge-
ometrical explanations that �nally produce the range
of values which a hyperbolic tangent must satisfy to
produce a unique projection.

2. HYPERBOLIC INNER PRODUCT AND

HYPERBOLIC SPACES

The inner product in hyperbolic geometry is de�ned
as the Lorentzian inner product. The Lorentzian inner
product leads to a new concept of length. In particular,
it is possible to have an imaginary length.
Let x and y be vectors in Rn with n > 1. The
Lorentzian inner product of x and y is a real number,
denoted by the notation � as shown here.

x � y = �x1y1 + x2y2 + : : :+ xnyn (1)

where xi and yi are the ith components of the vectors
x and y, respectively. Note that the algebraic sign of
the product term is the Lorentzian norm of a vector x
in Rn is de�ned as the complex number

kxk =
p
(x � x) (2)

where kxk is either positive, zero or positive imaginary.

Consider next the three-dimensional case of
Lorentzian inner product , < v; v >= x2 + y2 � t2.
The geometrical form of the Lorentzian inner product
is shown in Figure 1, where we may note the following:

(i) The cone x2 + y2 � t2 = 0 consists of zero-length
non-zero vectors referred to as a neural cone.



(ii) The inequality x2+y2� t2 < 0 de�nes the points
inside the cone that belong to the negative sub-
space.

(iii) The inequality x2+y2� t2 > 0 de�nes the points
outside the cone that belong to positive subspace.

In a Euclidean space, it may be noted that the inner
product is de�ned as < v; v >= x2 + y2 + z2 � 0 and
the equality occurs i� x = y = z = 0. Therefore no
neural cone exists in the Euclidean space.

The basic di�erences between the properties of a
hyperbolic space and a Euclidean space may be sum-
marized as follows: (1) the neural vectors, (2) due to
the presence of neural vectors, a special group of vectors
called the isotropic vectors which are non-zero vectors
lying in a linear space and orthogonal to every element
in that linear space and, (3) the unitary twin isomet-
ric vectors that are the unit-length vectors forming an
orthonormal basis. The unitary isometric spaces are
de�ned as follows:

As imaginary distances are possible in Lorentzian
(n + 1)-space, the hyperbolic n-space can be taken as
the sphere of unit imaginary radius:

Hni = x 2 Rn+1 : kxk2 = �1 (3)

The set Hni is a hyperboloid of two unconnected sheets
de�ned by the equation

x21 � (x22 + : : :+ x2n+1) = 1 (4)

The subset of Hni such that xn+1 > 0 (xn+1 < 0) is
called the positive (negative) sheet of Hni. The nega-
tive sheet of Hni is discarded [2].

We now de�ne a twin isometric space with real dis-
tances in Lorentzian (n+ 1)-space as:

Hnr = x 2 Rn+1 : kxk2 = 1 (5)

The set Hnr is another hyperboloid of connected sheet
( closed hyperbola with open ends) de�ned by:

x21 � (x22 + : : :+ x2n+1) = �1 (6)

The real and imaginary isometric spaces consist of iso-
metric vectors in opposite directions with equal magni-
tude (1 and -1). Figure 1 illustrates the twin hyperbolic
isometric space.

3. THE SEPARABILITY OF HYPERBOLIC

TANGENT KERNELS

From the inner product de�ned in hyperbolic geome-
try, we state the following:

Theorem 1: A kernel KH(xj ; xk), de�ned in hyper-
bolic spaces, is separable if and only if the kernel can
be expanded in a series given by

KH(xj ; xk) =
1X

i=1

�i�
T

i
(xj)�i(xk) (7)

with �1 < 0, j�1j > j�ij, 8i, i 6= 1 and �i 6= 0, 8i. Here
the functions �

i
(x) are eigen-functions and numbers �i

are the corresponding eigenvalues. 2

Proof: The matrix of dot product (Hessian or Gram
matrix) Hij � K(xj ; xk) [3]. We consider a hyper-
bolic Hessian 2 Rn, H =< Y;Y >, where Y =
fy

1
; y

2
; : : : ; y

n
g, and the eigenvalues of the Hessian are

�i; i = 1 : n. The principal eigenvalue must be negative
according to the inner product de�ned in (1). If �i = 0
for any i, then, the Hessian is singular. In a Hilbert
space, a singular Hessian implies that the solutions are
linearly dependent, but there exists a unique projec-
tion, < y

i
; y

i
>= 0, i� y

i
= 0. In hyperbolic spaces, a

singular Hessian means that there exists a linear combi-
nation of vectors that are orthogonal to every element
in that space, < y

i
; y

i
>= 0 means that the y

i
is any

isotropic vector, therefore, no unique solution.
At this point we say that the hyperbolic tangent

tanh(akxk2 + �) has two di�erent classes of geometry
according to the sign of �. From this point on, we
substitute � = 2 to avoid confusion of the two classes
of hyperbolic tangent function. Speci�cally, we state
the following:
Theorem 2: The hyperbolic tangent may belong to
one of two classes de�ned by tanh(akxk2 � 2) and
tanh(akxk2 + 2) which have two di�erent geometries.
Only the form of tanh(akxk2 � 2) can be separated
and expressed as in the form of Theorem 1. 2

Proof: (i) The geometry of tanh(akxik
2 � 2):

It can be easily seen that the hyperbolic tangent de�ned
as tanh(akxik

2 � 2), where xi 2 R2, has the same
geometry as explained in the previous section.

(i) For c > akxik
2 � 2 > 0, 1 > tanh(akxik

2 �
2) > 0, where the data subspace spans a feature
subspace in the space that belongs to kxk2 > 0,
which is a positive subspace in the Lorentz space.

(ii) For �c < akxik
2 � 2 < 0, �1 < tanh(akxik

2 �
2) < 0, where the data subspace spans a feature
subspace in the space that belongs to kxk2 < 0,
which is a negative subspace in the Lorentz space.

(iii) When akxik
2 � 2 = 0, tanh(akxik

2 � 2) = 0,
where the feature space spans on the neural cone
kxk2 = 0, which is a null-space having zero-
length, non-zero vectors.



(iv) When akxik
2 � 2 > c; tanh(akxik

2 � 2) = 1,
the features span a hyperbolic real space.

(v) When akxik
2 � 2 < �c; tanh(akxik

2 � 2) = -1,
the features span a hyperbolic imaginary space.

where c = tanh�1(1). Figure 1 illustrates the geometry
of tanh(akxik

2�2). Here, we can see the separability
of the hyperbolic tangent function is uniquely de�ned
by the neural cone.
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Figure 1: Hyperbolic Geometry/ Space

(ii) The geometry of tanh(akxik
2 + 2):

The geometry of the hyperbolic space tanh(akxik
2 +

2), xi 2 R2 can be explained in a similar way. In
this class of hyperbolic tangents, we can mention two
di�erences from the other class of hyperbolic tangent:

(i) No neural vectors exist, because tanh(akxik
2 +

2) = 0 only if akxik
2 = 0 and 2 = 0.

(ii) No imaginary isometric vectors exist, because
tanh(akxik

2 + 2) � 0

The separation sphere of non-isometric - isometric
space in this geometry be de�ned as

Hn = x 2 Rn+1 : kxk2 = c (8)

x21 + x22 + 2 = c (9)

where c = tanh�1(1). The sphere de�ned by kxk2 = c
is a closed sphere. The space outside the sphere is a uni-
tary (real) isometric space, i.e., tanh(akxk2 + 2) = 1.
The space inside the sphere is 0 < tanh(akxk2+ 2) <
1. Figure 2 illustrates the geometry of tanh(akxk2 +
2). In this geometry we have only real isometric space
and no neural cone, hence no separability. Therefore,
the hyperbolic tangent de�ned by tanh(akxk2 + 2)
cannot be used for a SVM. The simulation results pre-
sented in [4] also support our theory.
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Figure 2: Plot of tanh(akxk2 + 2)

3.1. Values of a and 2 for tanh(akxik2 � 2)

As explained previously, unlike Euclidean spaces, �nd-
ing the minimumof a degenerate type Hessian is a hard
problem. Therefore, we have more restrictions on a so-
lution in the hyperbolic space. For a unique solution,
the features must be initiated as non-isotropic and non-
isometric vectors.
Condition I: The neural cone consists of isotropic vec-
tors, therefore, initiating the input vectors either in
positive or negative subspace will be a solution. Initiat-
ing all the features in the positive subspace is impossi-
ble because tanh(akxik

2�2) < 0 for akxik
2 < 2. For

continuous data 2 f0;1g, more naturally akxik
2
min = 0

and akxik
2
max = k where k is a �nite value. Therefore,

initiation must be done in the negative subspace.

tanh(akxik
2
max

� 2) < 0 (10)

akxik
2
max � 2 < 0

2 > akxik
2
max

2

Condition II: In the negative subspace, an imaginary
isometric hyperbolic space exists. If the features are
initiated in the imaginary hyperbolic space, then there
may be no projection and, therefore, the initiationmust
be done in the time-like Lorentzian vector space.

tanh(akxi
2kmin � 2) > �1 (11)

2 < akxik
2
min

� tanh�1(�1)

2 < tanh�1(1)

a < tanh�1(1)=kxik
2
max

2

Finding the optimum solution from the above range is
problem-dependent and requires the use of trial and er-
ror.



4. REPRESENTATIVE EXAMPLES

In this section, we verify the solutions for a pat-
tern classi�cation task by using SVM that uses the
classes of hyperbolic tangent tanh(akxik

2 � 2) and
tanh(akxik

2 + 2) as activation functions. The clas-
si�cation task is depicted in Figure 3. All the results
presented in this section were obtained with a = 0:1,
number of points for training =456 and testing=1544.

First, we analyze the eigenvalues (EV) of the Hes-
sian matrices (Hij = yiyj tanh(axTxi�2)) formed by
both classes of hyperbolic tangents. Typically, for this
two-class pattern classi�cation task, a Hessian matrix
formed by hyperbolic tangent tanh(akxik

2�2), satis-
fying conditions (10) and (11) has (i) a large negative
principal eigenvalue, (ii) small number of small positive
eigenvalues, and, (iii) large number of negligible eigen-
values; and the kernels not satisfying these conditions
was found to have singular Hessians. The Hessian ma-
trices formed by hyperbolic tangent tanh(akxik

2 + 2)
have (i) a large positive principal eigenvalue and, (ii)
small and negligible values.

It can be seen that for the cases given in Table 1,
with tanh(akxik

2 + 2), the principal eigenvalues are
positive; therefore, in this case there are no Lorentzian
inner products. For this case no unique solution is ob-
tained for the separating hyper plane. For the cases
given in Table 2, with tanh(akxik

2� 2), the principal
eigenvalues are negative and the remaining eigenvalues
are positive. For this case, unique separating hyper
planes were obtained. We show the separating hyper-
planes obtained for tanh(akxik

2 � 2), a = 0:1 and
2 = 2; 3 and 4 in Figure 3. According to the range de-
rived in (10) and (11) for a and 2 of tanh(akxik

2�2)
for a = 0:1, 4 > 2 > 1:0. The simulation results
show a better separation (see Figure 3 and Table 2) for
2 = 2 compared to 2 = 3 and 2 = 4. It may be
noted, we approximate tanh�1(1) ' 5:0.

Table 1: Performance of tanh(axTx
i
+ 

2)


2 1 2 3 4

principal EV 439.64 453.75 455.69 455.69
second EV 4.93 0.69 0.09 0.09
third EV 2.03 0.28 0.04 0.04
fourth EV -0.72 -0.10 0.01 -0.01

no. of zeros in EVs 0 0 0 0

Table 2: Performance of tanh(axTx
i
� 

2)


2 1 2 3 4

principal EV -336.04 -437.26 -453.40 -455.64
second EV 32.51 5.84 0.82 0.11
third EV 13.55 2.39 0.34 0.04
fourth EV 3.12 0.75 0.11 0.01

no. of zeros in EVs 357 0 0 0
support vectors No sol. 56 78 119
raw error (%) - 3.30 4.15 5.51
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Figure 3: Plot of optimum hyper-planes

5. CONCLUSIONS

In this paper, we have shown that the separability
of hyperbolic tangent can be uniquely achieved only
for a certain class of hyperbolic tangent given by
tanh(akxik

2 � 2) for certain values of a and 2 that
provide a non-singular Hessian. A unique separation
cone known as the neural cone is used for separating
pattern which exists only for the above class of hy-
perbolic tangent. Finally, the necessary conditions to
choose the parameters a and 2 in tanh(akxik

2 � 2)
for a unique solution were derived.
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