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ABSTRACT

In this paper we report on the extension of captur-
ing speech transitions embedded in diphones using trajec-
tory models. The slowly varying dynamics of spectral tra-
jectories carry much discriminant information that is very
crudely modelled by traditional approaches such as HMMs.
We improved our methodology of explicitly capturing the
trajectory of short time spectral parameter vectors intro-
ducing multi-trajectory concepts in a probabilistic frame-
work. Optimal subspace selection is presented which �nds
the most discriminant plane for classi�cation. Using the
E-set from the TIMIT database results suggest that dis-
criminant information is preserved in the subspace.

1. INTRODUCTION

The temporal evolution of the short time spectrum is an
important characteristic of speech signals. This time vari-
ation is caused by the movement of the vocal tract and is
a rich source of information not only of the phonetic con-
tent of what is spoken, but also other information, such as
the speaker. State of the art statistical models make crude
approximations to the temporal variation, essentially by a
piecewise constant approximation that is inherent in the
hidden Markov model. Small extensions to this approxima-
tion, such as the inclusion of delta and delta-delta parame-
ters or the use of context dependent models (triphones) has
become common practice. However, both specialised mod-
els for dealing with context and dimensionality expansion
to capture ordering results in an explosion in the number
of parameters. Robust estimation of a very large number
of parameters then becomes the challenging task, requir-
ing techniques such as tied mixtures. The use of Recurrent
Neural Networks is seen as one plausible mechanism to cap-
ture such transitional information. An alternative approach
is the use of segmental models that model the time evolu-
tion of feature vectors within a segment. Typically, these
approaches use the phone as the unit of segmentation [3].

Clearly, a phone model for the vowel [i:] derived from all
contexts would be noisy, due to the di�erent spectral trajec-
tories into the vowel [i:], for example in the CV transition
/bee/ and /gee/. Hence we start from a slightly di�erent
premise that attempts to focus on the transition between
phones. Diphone units capture these transitions being de-
�ned as half of one phone followed by half of the next phone.
While the number of segments to model increases rapidly,

the hope is that one has a greater chance of capturing the
transitional information explicitly. The work described in
this paper is an extension of our earlier approach to model
speech transitions in a subspace where the temporal order-
ing is preserved which may be found in [4].

This paper introduces multi-trajectory concepts and a
probabilistic trajectory scoring to de�ne an objective tra-
jectory mapping method. Di�erent methods of trajectory
clustering and subspace selection are shown to optimise our
subspace models. Findings are that much of the discrimi-
natory information is retained even in a continuous speech
environment. We illustrate this on a simple problem involv-
ing the discrimination of the E-set, on the TIMIT database.
The confusion matrix is used to show the potential comple-
mentary information by modeling phone transitions explic-
itly.

2. SUBSPACE PROJECTION MODEL

Projecting a sequence of short term spectral parameters
onto a subspace with l � 3, where the temporal sequence
of these vectors are preserved, makes it possible to visu-
alise and model trajectories of important speech dynamics.
The parameter requirements for such a subspace model is
reduced to l � (n + p), where p is the dimensionality of
the spectral representation and n is the average number of
spectral frames for a speech unit.

An adaptation of the well known technique for dimen-
sionality reduction, principal component analysis or Karhunen-
Lo�eve-Transform [1], is used to generate projections onto a
l-dimensional subspace where the temporal ordering of the
data sequence is preserved. This method is called time-
constrained PCA (TC-PCA) [4].

Considering a data set T which consists of D sequences
of N p-dimensional points T = T1; � � � ;TD with Tk =
tk1; � � � ; tkN, it is the temporal evolution of these vectors
that is of interest. In order to preserve the temporal se-
quence information, we expand the dimensionality of the
data by one, using tk� = � � (1; � � � ;N).
Hence T� = tk�; tk1; � � � ; tkN, the extra dimension repre-
senting a scalable frame ordering as time constraint. The
scale factor � is introduced to control the weighting im-
posed by this extra time dimensionality. TC-PCA can be
described by solving the covariance matrix of the set of tem-
poral extended vectors. The subspace projection for each
diphone a results in a transformation matrix Pa

� . Finding
the best subspace for a particular diphone model which is



represented by a particular � is achieved by �nding the best
plane among all models, described below in section Optimal
Subspace.

2.1. Data Importance Adjustment

The extraction of the diphones from a phonetically labeled
database, like TIMIT, was performed using the start and
end sample information for the di�erent phones involved.
This information made it possible to calculate the average
frame length of each phone involved. Considering Schwartz
et al. [6], who proposed the importance of the transitions
within diphones, each training token was adjusted to pre-
serve the important regions. Here the inner region of a
diphone was treated as an inelastic area so that for expan-
sion or shrinkage the area around the phone boundary was
preserved (see Figure 1). The average length for each phone
involved was used to adapt the training data for one diphone
so that each token had the same length. The resulting data
set T was then used to calculate the needed transformation
matrices in the TC-PCA process.

transformation matrices
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Figure 1: Extension and shrinkage rule for diphones hav-
ing di�erent length in the process of template generation
and transformation matrix calculation using Schwartz elas-
tic/inelastic region theory.

The normalisation of the individual trajectories for all
diphones was performed to reveal the characteristic spec-
tral shapes of the projected short term spectral parame-
ters. Speaker characteristics distort the underlying process
by noise and scaling problems to which the TC-PCA pro-
cess is sensitive. Figure 2 shows the projection results for
raw and normalised diphone scatter plots.

2.2. Gaussian Trajectory Model

Assuming an N length sequence of observation vectors tN1 =
[t1; � � � ; tN ] generated by diphone a, where tj is a p-dimensional
observation vector at time j, this sequence de�nes a seg-
ment corresponding to diphone a. The subspace trajectory
is than formed by transforming the p-dimensional obser-
vation segment into a l-dimensional one t̂N1 , using t̂N1 =
tN1 � Pa

� . The segment is represented by the subspace tra-
jectory model:

t̂j = �̂
a
j + �̂j 1 � j � N (1)

where �̂aj and �̂j are the l-dimensional mean vector and
residual error vector at time j. Considering the error vectors
�̂j i.i.d., representing a Gaussian with zero mean and an
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Figure 2: Scatterplot of the data set for the diphone /d-ih/,
changing gray scales from dark to bright indicates temporal
evolution. (a) shows the raw data projected on a time con-
trained subspace. (b) shows a projection of the same data
normalised. Normalisation reveals the underlying spectral
shape of the temporal evolution of the projected short term
spectral parameters.

invariant covariance matrix �a, the likelihood of a sequence
of vectors can be expressed as:

P (t̂1; �; t̂N ja) =
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Extending this scenario to a multi trajectory case, where M
trajectories represent a diphone segment as a sequence of
anchor points represented as Gaussian the mixture density
trajectory model can be described as:

f(t̂j) =

MX

k=1

wkfk(t̂j) (3)



The mixture weights wk sum up to one, and the model
parameters �̂

ak
1 ; � � � ; �̂

ak
N and �a can be estimated using

a maximum likelihood criterion described in the following
section.

2.3. Trajectory Clustering

Characteristic trajectories captured in diphones are mod-
elled in the high-dimensional spectral parameterisation. Op-
timising the trade-o� between parameter requirements and
accuracy performances, the most suitable subspace can be
chosen using any best subspace projection onto a l-dimensional
subspace l < p by adaptation of the projection matrix.

2.3.1. K-means Trajectories

One simple way of clustering trajectories which still main-
tains the natural trajectories within a cluster is using the
K-means algorithm. The algorithm is applied to data be-
longing to the initial frame of a diphone a, which is located
in a spectral stationary region. The algorithm partitions
the data set Ta into M disjoint subsets Sak containing Tk

data points. Subsequently clustering the initial frame into
M centers, the consecutive points are also pooled according
to the subsets found, hence:

�
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Depending on the number of clusters found by the K-means
trajectory method, the algorithm results in M di�erent tra-
jectory templates which were used for trajectory classi�ca-
tion described below.

2.3.2. EM Trajectories

Trajectory templates for model parameters can also be ob-
tained using a maximum likelihood criterion, that max-
imises P (tN1 ja). The re-estimation formulas based on the
EM algorithm were derived by Fukada et al. [2], who max-
imised the following auxiliary function Q:

Q(��j�) = E [logP (tN1 ; kj��)jt
N
1 ;�]

=

MX

k=1

P (tN1 ; kj�)

P (tN1 j�)
logP (tN1 ; kj��) (4)

where � and �� are the sets of the current model parameter
and the re-estimated model parameter. Maximising Eq. 4
will lead to the di�erent model parameters for k di�erent
mixture components. The results of the k-means trajectory
clustering are used as initial model parameters for the EM
approach.

3. TRAJECTORY CLASSIFICATION

When a test trajectory is received, it is time warped to
match the length of the template. This enables the scoring
of test trajectories of di�erent length. The model score is
de�ned by the log-likelihood of the template which results

in the maximum score Va. The trajectory is than classi�ed
by �nding the diphone model with the best score, discrim-
inating between all competing diphones within the set of
models. The scoring is performed in a arbitrary subspace
and the projection matrix is applied to the templates and
the test trajectory before the scoring process is performed.
The likelihood score Va for a individual diphone a can be
expressed as:

Va = max
k
f
1

Na

NaX

j=1

logP (t̂N1 j�̂
Nk
1k

)g (5)

3.1. Optimal Subspace

The aim is to choose a plane which scores maximal in
terms of resulting likelihoods for training tokens and is also
maximal discriminant when competing with other models.
During the training process of choosing an optimal projec-
tion plane, two di�erent approaches are introduced to �nd
the optimal plane. The �rst method which is computa-
tional much cheaper (O(N)) is the ML transformation ap-
proach. Whereas the maximum discriminant method with
its O(N2) computational requirements is much more expen-
sive. Both algorithms are described below.

3.1.1. ML Transformation

A simple way of �nding an optimal plane for data transfor-
mation is to consider the training data for a speci�c diphone
only, �nding a maximum likelihood (ML) solution. Deter-
mination of the optimal plane is performed by maximising
the sum over all likelihood scores within the training set
which results in a particular plane index. No data from
di�erent diphones are considered for this selection.

3.1.2. MD Transformation

Transformation plane selection can also be performed con-
sidering the data for all competing models to obtain a plane
which is most discriminant (MD). The scores for all train-
ing data and for all diphones is used for a particular model
to �nd the projection plane which results in the most dis-
criminant transformation.

4. EXPERIMENTAL WORK

The experimental illustrations in this section, focus on the
inter-model discriminative accuracy, showing how well one
can distinguish between diphone trajectory models. De-
spite a signi�cant information loss during the dimension-
ality reduction, the important dynamic information is still
preserved. TIMIT is a convenient database to demonstrate
this approach of using diphones as speech segments be-
cause TIMIT is phonetically labeled which makes it pos-
sible to extract all occurring diphones. In the test scenario
the diphones of the complete E-set are used (e.g. /b-ih/,
/d-ih/, /jh-ih/, /p-ih/, /s-ih/, /t-ih/ and /v-ih/). There
are in total 2948 training tokens and 1076 testing tokens
available. Utilising the �nding from our earlier work that
higher order MFCCs have an oscillating nature, �ve Mel-
frequency cepstral coe�cients (MFCC) are used as speech



feature vectors. With an average trajectory sequence length
of approximately 12 frames within the E-set the param-
eter requirements for a mixture model of k mixtures us-
ing an l-dimensional subspace can be calculated by M =
[(k � 12) + (5 + 1)] � l, which results in an average model
size of about 100 parameters. In Figure 3 the confusion
matrices is shown for the classi�cation task in the original
parameter space and the projected space.

TIMIT E-set Accuracy

ML Plane MD Plane

Subspace Kmeans EM Kmeans EM

2D(normed) 49.8% 50.9% 41.7% 43.0%
Org(normed) 57.4% 57.1% 57.4% 57.1%

2D(unnormed) 45.6% 31.6% 47.3% 34.0%
Org(unnormed) 53.9% 41.8% 53.9% 41.8%

Table 1: Accuracy measures for the complete E-set using
the TIMIT database. Results are shown for a 2-dimensional
subspace and the original space using the di�erent optimal
subspaces and the di�erent trajectory modeling methods.
Separate measures were given for normed and unnormed
trajectories.

5. DISCUSSION

In this paper we presented an extension of our work of
modeling temporal trajectories on a low-dimensional sub-
space, which results in models of very low complexity and
reduced memory requirements in comparison with mod-
els involving context-dependent speech units. The results
suggest that discriminant information is preserved in the
subspace focusing on the temporal ordering. Future work
will concentrate on the usefulness of the trajectory informa-
tion whether modeling transitions provides one with com-
plementary knowledge in comparison with the information
obtained by standard HMM systems. Using a N-best rescor-
ing scheme [5] the proposed algorithm can be extended to
deal with continuous speech, which is proposed to incorpo-
rate the subspace mode into a phone-based system. The
rescoring mechanism can be used to emphasise paths in the
lattice of hypotheses using transitional models which might
avoid pruning out the correct sequence of phones. The mod-
elled inter-phone characteristics, which are captured by di-
phones, should complement baseline systems and lead to
better performances.
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Figure 3: Confusion matrix for diphone classi�cation of the
E-set within TIMIT. (a) shows the best results using the
unprojected parameter space in which the classi�cation is
performed. (b) shows the best results of projected test tra-
jectory onto a 2-dimensional space.


