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ABSTRACT

This paper introduces a new approach to acoustic-phonetic mod-
elling, the Hidden Dynamic Model (HDM), which explicitly ac-
counts for the coarticulation and transitions between neighbouring
phones. Inspired by the fact that speech is really produced by an
underlying dynamic system, the HDM consists of a single vec-
tor target per phone in a hidden dynamic space in which speech
trajectories are produced by a simple dynamic system. The hid-
den space is mapped to the surface acoustic representation via a
non-linear mapping in the form of a multilayer perceptron (MLP).
Algorithms are presented for training of all the parameters (target
vectors and MLP weights) from segmented and labelled acoustic
observations alone, with no special initialisation. The model cap-
tures the dynamic structure of speech, and appears to aid a speech
recognition task based on the SwitchBoard corpus.

1. INTRODUCTION

Much of the complexity and indirectness of the relationship be-
tween the acoustic patterns of speech and the linguistic structures
that they represent is caused by context-sensitivity [1].
Conventional large vocabulary continuous speech recognition sys-
tems model speech patterns as a sequence of stationary segments
(albeit with differential features). Various effects, including phono-
logical variation and hard coarticulation, are dealt with by dividing
the contexts of each phoneme into equivalence classes (using con-
text decision trees) and modelling these contextual variants sep-
arately (using mixtures of Gaussian components). While this is
a reasonable procedure for some types of phonological variation,
it is an extravagant approach to coarticulation, and ignores some
well-known properties of real human speech, with the result that
very large amounts of training material are required if the system
is to perform well with a large vocabulary and a variety of speakers
and speaking styles.
We are interested in a principled approach to the coarticulation
problem in acoustic-phonetic modelling that offers to provide com-
pact, realistic models that generalize well. It is a synthesis-based
method in which each phonetic segment has a (vector-valued) tar-
get characteristic of the type of segment. A dynamic process ‘smooths’
the sequence of targets, to produce a trajectory analogous to for-
mant frequency tracks or articulator positions. The observed acous-
tic pattern is produced through a non-linear mapping.
There have been several attempts to find useful alternatives to the
frame-by-frame finite-state HMM systems, so that whole phonetic
segments are treated specially, and so that coarticulation is a nat-
ural consequence of the model. One of the most general was by
Bakis [2]. Most attempts have used a linear mapping between the
space in which the dynamics happens and the acoustic observa-
tions [3]. Our approach is similar to that of Blackburn [4] in that

we use an MLP, but we use a single MLP and our hidden dynamic
system is much simpler yet quite powerful.

2. THE HDM AS A SPEECH SYNTHESISER

The Hidden Dynamic Model describes the way in which an acous-
tic pattern is produced from a sequence of phones with given du-
rations. The structure of the HDM is shown in Figure 1.
For each phone class, there is a single target vector which defines
a point in the hidden dynamic space. For each phone segment
in the sequence, the respective target applies for the duration of
that segment, resulting in the target sequence,tj , shown in Figure
1. This is typically multidimensional, but a single dimension is
shown here for clarity.
Note that the symbols we call ‘phones’ here are supposed to corre-
spond to acoustic segments with one target – diphthongs and some
allophones need more than one phone.
This target sequence is smoothed to produce a trajectory in hidden
dynamic space,xj . The filter used for this smoothing is a second-
order symmetrical (forward-backward) low-pass filter, whose sin-
gle time-constant parameter,pj , is also determined by the phone
class (see Appendix). In the general multidimensional case, there
is different time-constant for each dimension of the hidden dy-
namic space (the motivation for this will be described later).
The hidden dynamic trajectory is mapped to the surface acoustic
form, yj , by a non-linear mapping, here a multi-layer perceptron
(MLP). This mapping defines the hidden dynamic space, and a
single MLP is used for all phones. This mapping can be considered
analogous to the mapping between vocal tract shapes and speech
sounds, although we intend it to be learned only from the acoustic
data (as described in the next section), and not restrict it to any
predetermined form. The criterion is to model the structure of the
acoustic speech pattern.

3. TRAINING

This section describes how all of the parameters of the HDM can
be learned from segmented and labelled acoustic training data.
In training, the HDM is again used to synthesize an acoustic pat-
tern, yj from a sequence of phone symbols and timings (Figure
1). Now, however, we calculate how much the synthetic pattern
differs from the acoustic training data, in the simplest case, using
a Euclidean distance,E =

P
j
jy
j
� zj j

2, wherej ranges over
the complete training corpus.
In order to improve the acoustic pattern synthesis, we want to
change the HDM parameters so that this error,E, is reduced. One
way to achieve this is to obtain the derivatives of the error with
respect to each parameter of the model, and then carry out some
form of gradient descent onE.
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Figure 1: Calculating an acoustic error using the Hidden Dynamic
Model. Also shown is how derivatives of this error are backpropa-
gated through to the MLP weights and target vectors.

Derivatives ofE can be backpropagated through to the MLP weights
in exactly the same way this is usually done when training an MLP
from input/output pairs, first obtaining derivatives ofE with re-
spect to the MLP outputs. This allows us to obtain@E

@wk
, for all of

the MLP weightswk [5].
If the derivatives of the error are backpropagated right back to the
MLP inputs to give @E

@x
j

, it is possible to backpropagate the error

derivatives further, through the smoothing function to the phone
target values and time constants to obtain@E

@T
i

and @E
@P

i
(see Ap-

pendix).
Once the derivatives ofE with respect to all of the HDM param-
eters have been obtained, the parameters can be optimized using
gradient descent. All that remains to decide is what initialisation,
if any, is required.
Figure 2 shows hidden dynamic trajectories and synthetic acous-
tic patterns produced at various stages in such a gradient descent
learning procedure.
For the purposes of simplicity, the training data here is an 11 sec-
ond connected vowel utterance, of which roughly two-thirds is
shown. The acoustic patterns shown in Figure 2 are spectrograms
derived from the 12th order MFCC representation used fory

j
and

zj . This training data, together with a segmentation and labelling
is presented to the HDM training algorithm.
The HDM target parameters consist of six two-dimensional hidden
space targets for: (a) the five phone classes in the training data,
and (b) an additional target for silence. The two-dimensional na-
ture of the hidden space permits an easy visualisation of the hidden
dynamic trajectory (which will be shown later). All of these tar-
gets are initialized at zero (which results in the rather uninteresting
zero-valued hidden ‘trajectory’ shown in Figure 2(b)). The MLP
here has 40 hidden units in one hidden layer, and is initialized with
small random weight values. The time-constants are fixed here to
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Figure 2: The training acoustic patternzj (a), and the hidden dy-
namic trajectoryxj and synthetic speechy

j
at different points in

the training procedure: (b) at initialisation, (c) after 11 iterations,
and (d) after 32 iterations.

P i = [3; 3] frames for all phone classes,i.
After 31 iterations of conjugate gradient descent [5], the optimisa-
tion stops and the HDM is now capable of reproducing the training
data with a reasonable accuracy (Figure 2(d)). Visual inspection of
synthetic spectrograms produced by this HDM using other phone
sequences reveal that it is also capable of producing plausible tran-
sitions for phone combinations not seen in the training data.

4. THE HIDDEN SPACE

Because all the time constant parameters are equal in the HDM
described in the previous section, the hidden dynamic space can be
an arbitrary linear transform of thesex parameters to give the same
results. In Figure 3(a), thexj trajectories have been offset and
scaled to show that they closely resemble the formant frequencies
on a warped frequency scale.
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Figure 3: The synthetic spectrogram ((a) top) and the two hid-
den dynamic parameters ((a) bottom and (b)). In this case, the
HDM has discovered the formant frequencies on a warped fre-
quency scale.



Figure 4: Synthetic speech produced by an HDM with using a
linear mapping instead of an MLP. The HDM here has been trained
using the same material as in Figure 2.
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Figure 5: Hidden dynamic trajectories with time constants of 10,
100 and 1000 units for the centre segment.

The hidden dynamic trajectory is plotted in the original unscaled
hidden space in Figure 3(b). The vertices of this trajectory cor-
respond to the phone targets, and because the vowels have been
produced quite slowly in this utterance, the trajectory approaches
very close to the target for each vowel. It can be seen that the
x-axis corresponds toF1, while the y-axis corresponds toF2.
Also of interest here is the way in which the hidden dynamic model
encodes the silence ‘phone’ in the hidden representation, using a
usually undefined region of formant space whereF2 drops below
F1.

5. THE IMPORTANCE OF BEING NON-LINEAR

Figure 4 shows synthetic speech produced from an HDM, which
has been trained with the same training data as in Section 3, but
uses a linear mapping in place of the MLP used in Section 3.
Using a linear mapping here is equivalent to using the simple tran-
sitions given by the dynamic system, but operating directly in the
acoustic domain. The linear system is unable to reproduce con-
vincing formant transitions like those seen in Figure 2(d). This
demonstrates the importance of the non-linear mapping in mod-
elling the dynamics of the speech pattern.

6. DYNAMICS

The Appendix gives details of the time-varying symmetrical smooth-
ing that constitutes the dynamic part of the HDM. The time-constants
can also be thought of as target importance weights, variances as-
sociated with the targets, or the strength of influence of the tar-
gets on the trajectory. Figure 5 shows that by varying the time-
constant for a segment, the trajectory can either approach the the
target closely, or almost ignore it.
We chose this form of smoothing so that it would be useful for
some aspects of consonant gestures. For example, in the produc-
tion of a bilabial consonant such as the voiced stop, /b/, the most
important articulatory action is to make a closure at the lips. The
shape of the remainder of the vocal tract, such as the tongue posi-
tion, is determined mainly by the context in this case [6]. Accord-
ing to the ‘critical articulator’ theory [7], the production of other
consonants is similar, with the consonant influencing usually only
a local region of the vocal tract. This is in contrast to the way
vowel sounds specify an overall shape to the vocal tract.

Although the hidden representation of the HDM is an abstract hid-
den space, which is derived only from the data used to train the
HDM, the time constant parameters,Pi, at least give it the flexi-
bility to synthesize the sort of trajectories that occur in articulatory
space.

7. USE IN LVCSR

The simplest way to use an HDM for large vocabulary speech
recognition is to rescore N-best lists. Given word-transcription
hypotheses obtained from a conventional recognizer, a phone se-
quence and alignment can be obtained by using the same HMM
speech models used in the recognizer. The synthetic speech pattern
produced by the HDM for each phone sequence can be compared
with the observed speech, giving N new distance scores.
These scores, when combined with appropriate language model
scores, can be used to select the best transcription from the N-best
list according to the HDM. In general, the HDM scores can be
combined with those from the conventional system [8].
In a small experiment [9] with a portion of the Switchboard cor-
pus we observed that in choosing between the best 5 (or the best
100) word sequences the HDM rescoring was not useful, perform-
ing close to chance. However, when the best 5 were ‘enriched’
(by adding the reference transcript), the HDM system showed that
it contained information not in the original HMM system (word
error rate dropped from 48% to 35%). The 30 minutes of train-
ing material was from a single male speaker, and the test material
was 1241 utterances from 23 other men. A simple HMM system
trained on exactly the same material did not reduce the WER in
this way.

8. CONCLUSIONS AND FUTURE WORK

We think that the simple, flexible structure described here has po-
tential for capturing important aspects of the relationship between
phonetic labels and acoustic patterns, with potential applications in
speech science, synthesis and recognition. Because it is so simple,
there are also many possibilities for extending it.
Although the system has been presented here as a trainable synthe-
sizer, with a simple error measure used in re-scoring for ASR, it
is not difficult in principle to pose it as a stochastic model with
the squared error as a log likelihood of observations Gaussian-
distributed about the mean for each frame, and to allow proba-
bilistic variation in the segment targets.
Perhaps the most important area where our model needs to be
developed concerns time-alignment. These days we expect an
approach to ASR to include a method a dealing with unknown
timescales, and solutions are usually based on Dynamic Program-
ming, which relies on a finite state-space. DP is not applicable
to search for HDMs, but there are several possibilities for sub-
optimal search for alignment. One of the simplest is to find the
timewarp that aligns the synthetic pattern and the natural pattern,
then apply this timewarp to the segmentation [10].
Because of the economical parameterisation, there are some in-
teresting possibilities for dealing with speaker differences. For
instance we can hope that most of the variation in the sets of
target vectors for different speakers will be included in a low-
dimensional ‘speaker space’, in which speaker adaptation can be
attempted [10].
We have some hope of extending the model to be compatible with
modern phonological theories based on overlapping features, as
proposed by Deng [11].



9. ACKNOWLEDGEMENTS

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. (#IIS-9732388), and was carried
out at the 1998 Workshop on Language Engineering, Center for
Language and Speech Processing, Johns Hopkins University. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily re-
flect the views of the NSF or JHU.

APPENDIX
The forward-backward filter used in Section 2 is a simple form of
Kalman smoother. It can be expressed for a single hidden space
dimension as

x = K(t; p; r) (1)

wherex is the hidden dynamic state sequence (xj from j = 0
to j = n � 1), t is the target sequence,p is the time-constant
sequence, andr determines the scale of the time-constant values
and is set to unity in this work.
This function essentially solves the set ofn simultaneous equa-
tions acting at each framej which balance the influence of the
targettj and the adjacent values ofx: xj+1 andxj�1

xj(p
�1

j + 2r�1) = p
�1

j tj + r
�1
xj+1 + r

�1
xj�1 (2)

The forward-backward Kalman smoother equations which describe
this functionK(t; p; r) are as follows:
‘Forward prior’ calculation:

�
+

j =
pj�

+

j�1 + (�+j�1 + r)tj

pj + (�+j�1 + r)
; �

+

j =
pj(�

+

j�1 + r)

pj + (�+j�1 + r)
(3)

wherej = 1 to n � 1 and the recursion is initialized with

�
+

0 = t0; �
+

0 = p0 (4)
�+j and�+j represent the prior mean and variance for the dynamic

state given all of the targets up until framej1.
The ‘backward prior’ calculation to obtain��j and��j is simply
the time-symmetric version of the forward one.
Forward and backward prior combination:

�
+�

j =
�+j�1(�

+

j�1 + r) + ��j+1(�
�

j+1 + r)

(�+j�1 + r) + (��j+1 + r)
;

�
+�

j =
(�+j�1 + r)(��j+1 + r)

(�+j�1 + r) + (��j+1 + r)
(5)

wherej = 1 to n � 2 and

�
+�

0 = ��1 ; �+�0 = �
�

1 (6)

�
+�

n�1 = �+n�2; �+�n�1 = �
+

n�2 (7)

�+�j and�+�j represent the prior mean and variance given the
whole target sequenceexceptthe target at framej.
Finally, the smoothed state sequence is derived by combining the
forward-backward prior with the target ‘observations’.

xj =
�+�j pj + tj�

+�

j

pj + �+�j
(8)

1Apologies to those accustomed to using� and� to represent the for-
ward and backward probability distributions in conventional HMM calcu-
lations.

wherexj is the hidden dynamic state sequence at timej.
The Kalman smoother function,K(t; p; r), is also used to back-
propagate error derivatives to the HDM target,Ti, and time con-
stant parameters,Pi, during training.
It can be shown that from Equation 2

@x

@Ti
= K(

@t

@Ti
; p; r) (9)

The derivative of the error with respect to the target values can be
obtained by the chain rule

@E

@Ti
=

n�1X
j=0

@E

@xj

@xj

@Ti
(10)

Similarly, to obtain the derivatives of the error with respect to the
time-constant parameters

@x

@Pi
= K(u; p; r) (11)

where

uj =

�
xj � tj

pj

�
@tj

@Ti
(12)

Again, the derivative of the error with respect to thePi time-
constant parameters can be obtained by the chain rule.
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