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ABSTRACT

Original methods of radar detection performances analysis are de-
rived for a fluctuating or non-fluctuating target embedded in addi-
tive anda priori unknown noise. This kind of noise can be, for ex-
ample, the sea or ground clutter encountered in surface-sited radar
for the detection of target illuminated at low grazing angles or in
high resolution radar. For these cases, the spiky clutter tends to
have a statistic which strongly differs from the gaussian assump-
tion. Therefore, the detection theory becomes difficult to perform
since the nature of statistics has to be known. The new methods
proposed here are based on the parametric modelisation of the mo-
ment generating function of the noise envelope by Padé approxi-
mation and lead to a powerful estimation of its probability density
function. They allow to evaluate the radar detection performances
of target embedded in any noise without knowledge of the closed
form of its statistic and allow in the same way to take into account
any possible fluctuation of the target. These methods have been
tested successfully on synthetic signals and have been performed
on experimental signals such as ground clutter.

1. DESCRIPTION OF THE PROBLEM

The radar detection of a target against a background of unwanted
clutter due to echoes from the sea or land is a problem of interest
in the radar field. For many years, the statistic of quadrature com-
ponents of the radar clutter was supposed to be jointly gaussian
because of the low radar resolution capabilities : in this case, the
clutter was viewed as a sum of responses from a very large num-
ber of elementary scatterers (Central Limit Theorem). The cur-
rent systems have now improved their resolution capabilities and
hence their performances of detection. However, as resolution has
increased, the statistic of the additive noise have no longer been ob-
served to be gaussian. Recent experimentations conducted in ON-
ERA indicate that large deviation from Rayleigh statistics are ob-
served in situations such as low grazing angle illumination or with
high resolution radars. In such cases, due to the spiky nature of
the clutter, the empirical distribution exhibits both higher tails and
larger standard deviation to mean than predicted by the Rayleigh
distribution. Therefore, many works have been devoted to fit em-
pirical models of distribution to experimental data. This is the case
of the compound gaussian processes [1, 2], also called Spherically
Invariant Random Processes (SIRP) which allow to modelise the
multivariate probability density function (PDF) of the envelope of
the clutter returns, taking into account the possible spatial or tem-
poral correlation of the processes. The well known log-normal,
Weibull and K-distribution densities [3] belong to this class of

distributions but the main problems for this kind of parametriza-
tion are the quality of the estimation of the SIRP parameters and
the complexity of the optimal detector implementation. We pro-
pose in this paper to analyze the performances of radar detection
of a target embedded in any combination of clutter and thermal
noise without the knowledge of the closed form of the densities of
the noises. The estimation of the noise envelope density is only
performed according to the modelisation by Padé approximation
of the moment generating function (MGF) of the noise envelope.
This method is based on the estimation of all then-order moments
of the noise envelope. The goal of this paper being not to derive
a method of evaluating the best estimation of the moments, they
will be supposed exactly estimated. This kind of modelisation al-
lows to derive, for a constant false alarm rate, the simple form of
the probability of detection of a target with constant or fluctuating
envelope embedded in a complex noise fully characterized by the
moments of its envelope.

2. GENERAL RELATIONS OF THE DETECTION
THEORY

We consider here the basic problem of detecting the presence or
absence of a complex signals(t) with envelopeA in a set of mea-
surementsy(t) = yI(t) + i yJ(t) corrupted by a sum of indepen-
dent additive complex noises corresponding to the clutter echoes
c(t) and white gaussian thermal noisen(t). This problem can be
described mathematically in terms of a hypothesis test between the
following pair of statistical hypothesis :

H0 : y(t) = n(t) + c(t) (1)

H1 : y(t) = s(t) + n(t) + c(t) (2)

If we notepH0
(r) the probability density of the noise envelope

jn(t) + c(t)j, the detection threshold� is fixed by the value of the
given probabilityPfa of false alarm.

Pfa =

Z +1

�

pH0
(r) dr (3)

while, denotingpH1
(r) the PDF of the envelope of the complex

signal embedded in noisejs(t) + n(t) + c(t)j, the detection prob-
ability Pd is classically given by :

Pd =

Z +1

�

pH1
(r)dr (4)



Since the phases between quadrature components of the clut-
ter, thermal noise and the target are unknown, they are commonly
supposed to be uniformly distributed on[��; �]. In this case, each
two-dimensional density function of the quadrature component is
hence a circular symmetric distribution. This implies that, with a
change of variable in polar notation, each two-dimensional char-
acteristic function becomes a function of a single radial variable�.
This function of one variable is called the coherent radial charac-
teristic function. DenotingJn(:), the ordinary Bessel function of
ordern, the characteristic functionC(�) and the densityp(r) are
related by the following relation pair :

p(r) =

Z +1

0

r �C(�) J0(� r)d� (5)

C(�) =

Z +1

0

p(r)J0(� r) dr (6)

For a deterministic signal with constant envelopeA charac-
terized by its PDFp(r) = �(r � A), the coherent radial charac-
teristic function is given byC(�) = J0(�A). The characteristic
functionCH1

(�) of the sum of the signals(t) and unwanted noise
c(t) + n(t), is equal to the product of the characteristic function
of the signalCs(�) and the characteristic function of the noise
Cc+n(�). We are now able to define a relation between the den-
sity pH0

(r) of the envelope under hypothesisH0 (noise only) and
the densitypH1

(r=A) of the envelope under hypothesisH1 (noise
and signal with constant envelopeA ) :

pH1
(r=A) =

Z +1

0

r �Cs(�)Cc+n(�)J0(� r)d� (7)

=

Z +1

0

r � J0(�A)Cc+n(�)J0(� r) d� (8)

with

Cc+n(�) =

Z +1

0

pH0
(r)J0(� r) dr (9)

Replacing (9) in (8) gives the following important relation :

pH1
(r=A) =

Z +1

0

Z +1

0

r� J0(�A)J0(�r)J0(�r
0) pH0

(r0) d�dr0

(10)
For example, this relation connects the pdf of the envelope

of a complex gaussian noise (Rayleigh distribution)pH0
(r) =

r

�2
exp (�r2=2�2) to the pdf of the envelope of a constant sig-

nal embedded in this complex noise (Rice-Nakagami distribution)

pH1
(r=A) =

r

�2
exp

�
�
A2 + r2

2�2

�
I0

�
r A

2�2

�
.

In the case of fluctuating target with density envelope fluctua-
tion lawp(A=A0) (with parameterA0 representing the mean value
of the fluctuation), the relation (10) becomes more general :

pH1
(r=A0) =

Z +1

0

pH1
(r=A) p(A=A0) dA (11)

The two relations (10) and (11) are quite difficult to compute
numerically for evaluating the performances of detection for sev-
eral signal-to-noise ratio. We propose in the next section to use an

interesting method proposed and developed in [4, 5] which allows
to estimate the pdf of any noise from itsn-order moments and to
give very useful relations to compute the pairPd; Pfa for a given
signal-to-noise ratio.

3. DESCRIPTION OF THE PADÉ APPROXIMATION

This method is based on the parametric construction of the Mo-
ment Generating Function (MGF) of the envelope of the noise by
Padé Approximation. The MGF�(u) of a random process is de-
fined by the mono-lateral Laplace transform of its envelope PDF
p(r) :

�(u) =

Z +1

0

p(r) e�u r dr (12)

If we note�n =

Z +1

0

rn p(r)dr, the moments of ordern

of the noise envelope are obtained by developing�(u) in Taylor
series :

�(u) =

1X
n=0

�n
(�u)n

n!
=

1X
n=0

cn u
n (13)

If we suppose all the moments�n perfectly known up to order
L+M +1. The main idea of [4, 5] is to truncate the infinite series
at the orderL+M+1 and to approximate it by a rational function
P [L=M](u) (L < M ) defined by :

P [L=M](u) =

LX
n=0

an u
n

MX
n=0

bn u
n

(14)

where the coefficientsfang et fbng are determined so that the
following equality be verified :

LX
n=0

an u
n

MX
n=0

bn u
n

=

L+MX
n=0

cn u
n (15)

The moments matching conditions fix in a first step the set of
coefficientsfbng by solving a simple set ofM linear equations
for theM unknown denominator coefficients and in a second step
the setfang by a simple convolution of thefbng and thefcng
coefficients :

MX
n=0

bn cL�n+j = 0; 1 � j �M (16)

aj = cj +

min(M;j)X
i=1

bi cj�i; 0 � j � L (17)

The set of coefficientsfang andfbng so determined, forms,
thanks to the Padé Approximation, the parametric modeling of the
MGF. If we suppose the rational fraction approximation hasM



distinct poles with negative real part to assume its convergence for
u =1, the relation (14) can be rewritten as :

P [L=M](u) =

MX
k=1

�k
u� �k

Re(�k) < 0 (18)

To determine the PDFp(r) and the Cumulative Density Func-
tion (CDF)F (r) from the Padé approximation of the MGF, the
Inverse Laplace Transform is performed by residue inversion for-
mula and the result leads to a sum of decaying exponentials :

p(r) =

MX
k=1

�k e
�k r (19)

F (r) = 1 +

MX
k=1

�k
�k

e�k r (20)

In the case of some poles with positive real part, it is necessary
to stabilize the rational fraction without changing the moments [4].
The Padé approximation gives good results in the estimation of a
probability density function and an example is shown at figure 1
for the K-distribution density defined by :

p(r) =
b�+1

2��1 �(�)
x� K��1(b x) (21)

whereK��1(:) is the modified Bessel function of the third kind,
� is the shape of the density and the parameterb is related to the
second order moment�2 by :

b = 2
q

�

�2
(22)

This method has to be compared with a non-parametric method,
based on the estimation of the pdf by kernel method and described
in [6]. However, this one is not here well adapted to our problem
because of its poor quality of estimation in the tail of distribution.

4. EVALUATION OF DETECTION PERFORMANCES

The general relations given by (10) and (11) can be simplified
when using Padé approximation for the pdf of the noise envelope
and for the pdf of the envelope fluctuation. With the knowledge
of experimental data of the envelope of the noise,pH0

(r) can be
approximated by a sum of complex decaying exponentials :

pH0
(r) =

MX
k=1

�k e
�k r (23)

where the set of coefficientsf�kg andf�kg is determined by the
Padé approximation. Replacing (23) in (10) leads to :

pH1
(r=A) =

Z +1

0

� r

MX
k=1

�k
J0(�A)J0(� r)p

�2 + �2
k

d� (24)

Recalling that

Z �

0

r J0(� r) dr = � J1(� �)=�, the probabil-

ity of detectionPd defined by (4) takes the simple form :
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Figure 1: Analysis of Padé K-distribution approximation (� =
0:1) and (�2 = 1). The detection threshold value� = 18:1 is
shown forPfa = 10�6

Pd = 1 �

Z +1

0

MX
k=1

�k �
J0(�A) J1(� �)p

�2 + �2
k

d� (25)

where the detection threshold� is perfectly defined by the deter-
mination (Newton find root algorithm) of the non-linear equation
(see (3)) :

Pfa = �

MX
k=1

�k
�k

e�k � (26)

In the case of fluctuating target (Swerling fluctuations for ex-
ample), it is possible to estimate the envelope fluctuation density
p(A=A0) by Padé approximation :

p(A=A0) =

NX
i=1


i e
�i A (27)

where the parametersf
ig andf�ig depend implicitly on the mean
value of fluctuationA0. The equation (11) can be transformed as :

pH1
(r=A0) =

Z +1

0

MX
k=1

NX
i=1


i �k
r � J0(� r)p

(�2 + �2i ) (�
2 + �2

k)
d�

(28)
which leads to the detection probability formula with the detection
threshold� always given by the resolution of (26) :

Pd = 1�

Z +1

0

MX
k=1

NX
i=1


i �k � J1(� �)p
(�2 + �2i ) (�

2 + �2
k)
d� (29)

The relations (25) and (29) are very general and can be eas-
ily computed. The figure 2 shows results of pdf and cdf Padé
approximation obtained on experimental forest clutter data. The
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Figure 2: Results of the approximation density obtained on the en-
velope of experimental data (forest clutter). The detection thresh-
old � for experimental data is calculated according to equation (26)
with Pfa = 10�6 and it has to be compared with the one com-
puted for the Rayleigh hypothesis case

figure 3 gives detection performances of an hypothetical non fluc-
tuating target which would be embedded (in phase and amplitude)
in such a noise. The curves show the mismatch between the real
hypothesis and the Rayleigh hypothesis. The moments have been
estimated from the set of complex clutter datayi according to the
classical way :

�n =
1

N

NX
i=1

jyij
n (30)

The normalized MGF of experimental data takes the form :

�(u) = 1� 0:7652 u+ 0:5 u2 � 0:2877 u3 + 0:1431 u4

�0:06229 u5 + 0:02408 u6 � 0:008382 u7

+0:00265 u8 � 0:0007672 u9 + 0:0002043 u10

�0:0000503 u11 (31)

and the[5=6] Padé approximation becomes :

P [5=6](u) =

6X
k=1

�k
u� �k

(32)

with

f�kgk2[1;6] = f8:4237 � 10:244 i; : : :

�0:035157 � 0:038976 i; : : :

�8:953 � 48:34 ig (33)

f�kgk2[1;6] = f�2:823� 1:9382 i; : : :

�1:2425 � 3:153 i; : : :

�3:2174 � 0:63591 ig (34)
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Figure 3: Comparison between detection performances in experi-
mental data (forest clutter) and detection performances in classical
Rayleigh noise. The two noise have the same power and the results
are shown for a probability of false alarm fixed toPfa = 10�6

5. CONCLUSION

This paper has presented a general method easy to perform for
evaluating the performances of target detection from the knowl-
edge of then-order moments of the envelope of the unwanted
noise. This method is based on the Padé approximation of the
probability density function which allows to derive simple and
general relations of the pair(Pd; Pfa). This method has been suc-
cessfully tested on academic noise (from the true moments and
also from the moments estimates) but also on experimental noise
data.
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