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ABSTRACT
This paper describes recent changes in Dragon’s speech
recognition system which have markedly improved performance
on conversational telephone speech.  Key changes include: the
conversion to modified PLP-based cepstra from mel-cepstra; the
replacement of our usual IMELDA transformation by a new
transform using “semi-tied covariance”; a new multi-pass
adaptation protocol; probabilities on alternate pronunciations in
the lexicon; the addition of word-boundary tags in our acoustic
models and the redistribution of model parameters to build fewer
output distributions but with more mixture components per
model.

1.  INTRODUCTION

Recognition of conversational telephone speech has progressed
dramatically since the introduction of the Switchboard corpus [1]
in the early 90’s.   While originally on the receiving end of
improvements largely developed for other domains, such as
DARPA’s Wall Street Journal task, the Switchboard task has
progressed so far and recognition output is now so intelligible,
that work on conversational telephone speech has become a
standard domain for gauging general speech recognition
improvements, as well as a prime candidate for commercial
applications.  There is now a rich exchange of techniques and
ideas between the Switchboard development effort and WSJ’s
descendant, the recognition of Broadcast News.

Two years ago, Dragon presented improvements to its
Switchboard recognition system in [2].  Since that time, error
rates have continued to decline and the development set has been
augmented by the addition of English language calls from the
more challenging CallHome corpus, a multilingual corpus of
international telephone conversations between friends and
family.  We now present results on our next stage of
improvements, which result in substantial reductions in error rate
over the system reported in [2].

In the sections which follow, we focus on some of the key
improvements: a revision of the front-end to use modified-PLP
cepstra and a new “diagonalizing” transformation using semi-tied
covariance, inclusion of word-boundary tags in the acoustic
models and a shift to fewer output distributions with more
mixture components per distribution, a new multi-pass
adaptation protocol, and the introduction of probabilities on
pronunciation variants in the lexicon.

The reader should be warned that we have found testing of
improvements highly volatile on this corpus:  one can get widely

differing readings as one varies the test set.  (Consequently,
results cited in the literature only on small tests, especially in the
absence of reported significance levels, should be viewed with
caution.)  We therefore report most results below on a variety of
tests: the 20 conversation-side “CAIP” set of Switchboard calls
(about 9k words), a test of 15 two-sided Switchboard
conversations we refer to as “SWB’95” (roughly 13k words), and
a collection of 20 two-sided CallHome calls “CH’96” (20k
words).  Although the results on individual test sets vary a great
deal, we find the aggregated results over several tests a generally
reliable indicator of performance.

2.  IMPROVING THE FRONT-END

Dragon’s standard signal processing at the time of [2] generated
a 44-parameter feature vector every 10 msec: 8 spectral
parameters, 12 mel-cepstral parameters, 12 mel-cepstral
differences, and 12 mel-cepstral second differences. These
parameters were mapped down to a family of 24 under an
IMELDA transformation [3], which had the benefits of reducing
the degree of correlation within the feature set and reducing the
number of features needed as well.  Since then, we have
improved our cepstral calculation and have taken a new look at
the role of “diagonalizing” transformations in our models.

2.1  PLP Parameters

In 1997 we converted our standard front-end to use modified
PLP-based cepstra rather than our usual mel-cepstra.  We found
that PLP (“perceptual linear prediction”) coefficients [4]
provided a more robust front-end, especially for mismatched
train/test conditions and/or when the amount of training data was
limited.  Our implementation follows the modification of PLP
processing reported by Cambridge/HTK [5].

Table 1 shows the effect of the switch to PLP processing on a set
of models trained from only 13 hours of Switchboard data as well
as more “evaluation-quality” models trained from 170 hours.  We
show results both on the “CAIP” set and on a test of
CallHome/English conversations before the addition of
CallHome data to our acoustic training set.

13-hr models 170-hr models
orig PLP orig PLP

CAIP 45.0 43.6 39.4 39.7
CH’96 60.4 58.5 54.6 53.4

Table 1: Improvement from moving to modified PLP-
based cepstra.  (Figures give word error rates.)



The win from PLP processing continues to hold up even as our
acoustic modelling improves, as shown in Table 2 for a recent set
of 60-hour models.  (These models also use a pure Switchboard-
trained trigram language model instead of the bigram models
used in Table 1 -- a better model for Switchboard, but not as
good a fit to CallHome data.)

CAIP SWB’95 CH’96 overall

original 38.6 41.1 56.6 47.7
PLP 37.5 40.4 54.0 46.1

Table 2: Further improvements from modified PLP-
based cepstra, now for better 60-hour acoustic models.

2.2  Diagonalizing Transformations

Recently, we have been re-examining our use of the IMELDA
transformation and, in parallel with our work on the Broadcast
News corpus (reported in [6]), have explored more general
“diagonalizing” transformations.

Inspired by the work of Kumar [7] and Gales [8] on
generalizations of LDA, we have been testing transformations
based on what Gales calls “semi-tied covariance”.   The main
idea is that, because we assume a diagonal covariance in the
multivariate gaussians used in our acoustic models, we should
seek a representation of acoustic space that most closely realizes
this assumption.  For more detail on Dragon’s implementation of
semi-tied covariance, see [6].

Table 3 shows the improvement from switching to a
transformation based on semi-tied covariance.  The “44/24”
models start from our standard 44-parameter processing, mapped
to 24 under either our usual IMELDA transform (IM) or using a
semi-tied covariance mapping (ST) trained on the 24-parameter
IMELDA-ized space.  The “36” models use only the 36 cepstral
and difference parameters, leaving out the spectral features.  All
models are trained from the 170-hour training set and use a
trigram language model.  (They also incorporate the acoustic
modelling improvements described in the next section.)

CAIP SWB’95 CH’96 overall

44/24 IM 34.3 36.8 50.8 42.7
44/24 ST 33.6 35.6 49.5 41.6

36 IM 34.6 36.4 50.1 42.2
36 ST 32.8 35.7 49.8 41.6

Table 3:  IMELDA vs. semi-tied covariance for
spectral+cepstral and pure cepstral parameters.

This implementation of semi-tied covariance is quite new and
wrinkles are still being ironed out, but already results look quite
promising.

3.  CHANGES TO ACOUSTIC MODELS

The acoustic models we are using are triphone models with 2 to 4
nodes arranged linearly (but with single skips allowed), each
node having an output distribution, which we call a ‘PEL’ for
“phonetic element”, and a duration distribution.  Which PEL

model to employ in a given position of a triphone is determined
based on decision trees whose nodes ask linguistic questions
about neighboring phonemes.  The PEL models themselves are
mixtures of multivariate gaussian distributions.  All models
described here are gender-independent, speaker-normalized
models.

The decision trees used to determine the sharing of models
among phonetic contexts now include the capability of asking
questions about the position of word-boundary as part of the
phonetic context.  The improvement from using such word-
boundary tags appears to be small but significant, as
demonstrated in the first two lines of Table 4 for a set of models
trained from 60 hours of Switchboard data and using a trigram
language model.

word # Max recognition WER
bndry PELs Comps CAIP SWB’95 CH’96 overall

no 14.4k 20 37.4 39.5 54.7 46.1
yes 14.4k 20 36.3 39.3 54.4 45.6
yes 7.5k 64 34.9 38.8 52.7 44.4

Table 4:  Effect of word-boundary modelling and fewer
PELs with more components.

We have also been exploring different schemes for allocating
parameters in our acoustic models.  In earlier years, we built
models with tens of thousands of PEL models and up to 20
gaussian components per mixture.  We are now seeing
substantial improvements from using fewer PELs but with many
more components per PEL.  The last line of Table 4, above,
shows a sample result for the 60-hour models.

Table 5 shows the performance of “evaluation-size” models
trained from 170 hours of data but using our older (non-PLP)
signal processing.  All models use word-boundary markers.  The
first line shows models like our earlier evaluation-style models
with many PELs and up to 20 components per PEL.  The other
lines show the effect of markedly cutting back the number of
PELs and then increasing the number of components.  Note that
the models with 7.5k PELs and up to 64 components/PEL
involve roughly the same number of model parameters as the 24k
PEL / 20 component models.

# Max recognition WER
PELs Comps CAIP SWB’95 CH’96 overall

24k 20 36.8 38.0 53.7 45.0
7.5k 20 37.2 39.0 54.8 45.9
7.5k 64 35.0 37.7 52.6 44.0
7.5k 96 34.6 37.0 52.1 43.5

Table 5:  Effect of reducing #PELs and increasing
#components per PEL.

4.  ANOTHER LOOK AT ADAPTATION

While reviewing our procedure for rapid adaptation and speaker-
adaptive training (SAT), as earlier described in [2], we made a
rather remarkable discovery.  We took two models: model A was
built directly from the training data, and model B used our SAT



algorithm to transform the data.  We then ran the following series
of experiments:

(1) recognize with A, adapt and re-recognize with A
(2) recognize with A, adapt and re-recognize with B
(3) recognize with B, adapt and re-recognize with A

Experiment First round
 error rate

Second round
error rate

(1)  A → A 39.9 37.1
(2)  A → B 39.9 36.4
(3)  B → A 39.8 36.2

Table 6: Effect of permuting models between adaptation
stages.  Use first model to recognize, then adapt and re-
recognize with second.

Two years ago, we showed that experiment (2) had an error rate
about 1.5 points lower than experiment (1).  At the time, we (and
various other sites) claimed that this was because model B was
“more focused” and therefore better for rapid adaptation.
However, we now find that experiment (3) gets the same error
rate as experiment (2), and both are better than experiment (1).
(Note that these numbers are on the SWB’95 test set, and the
gain from SAT is somewhat smaller than seen earlier. But it is
still real: a matched-pairs test shows that both (2) and (3) are
better than (1) at a significance level of P < 0.01, while (2) and
(3) are not significantly different from each other.)

It seems clear that SAT is not doing what we originally thought.
The best explanation that we can come up with is “jiggle”.
Models A and B are equivalent, but different.  In particular, they
make different errors, and when we use the recognition results
from one to adapt the other, we are effectively “interpolating”
between the two sets of models.

Additional gains come from iterating the adaptation/recognition
step, and we have found two techniques for enhancing this effect.
The first is jackknifing on the recognition transcript, to avoid
“locking in” the recognition errors.  For example, we adapt on all
but the first utterance, then recognize the first, and so on.  A less
computationally expensive alternative is to bundle the utterances
into a reasonable number of clusters of approximately equal size.
In our experience we get best results if we jackknife between the
first and second rounds of recognition (but not between second
and third), and typically we see results between 0.5 – 1.0 points
better than without jackknifing.

To get the full benefit of iterating, we find we need to change the
clustering (that we use for the rapid adaptation classes) between
the two rounds of adaptation.  Other sites (see, for example, [5])
have reported getting better results from iterating when they
gradually increase the complexity of their transformations.  It
may well be that the issue is not necessarily complexity, but
rather that changing the transformation classes between rounds is
another way of mixing things up and avoiding locking in errors.
In Table 7 we show the results of combining jackknifing and
switching classes with the results of leaving out one of these two
steps.  The recognition both here and in Table 6 above use 60-
hour models and our standard Switchboard trigram language
model.   (Note that the results of the “best” run are significantly
better than “no jackknifing” with P < 0.02).  Overall on this test

set we see a full 5 points from adaptation, though results vary
with the models, and in particular we appear to get smaller gains
using models built from more training data.

1st round 2nd round 3rd round

Best 39.9 35.9 34.9
No Jackknifing 39.9 36.4 35.5
Same classes 39.9 35.9 35.8

Table 7: Improvements from jackknifing and from
changing transformation-class assignments between
passes.

An obvious question is how far we can get by iterating the
adaptation beyond the third round.  If we continue one more
time, we get a statistically insignificant improvement of 0.2
points. We can get an approximate lower bound by adapting on
the correct transcript. It is well-known that the naïve cheating
experiment simply “locks in” the correct transcript, resulting in
an artificially low error rate.  We can avoid this pitfall by
jackknifing as described above, and the result is 34.3%.  This
number is astonishingly close to the best error rate obtained
above.  It is telling us that given the limitations of the rapid
adaptation algorithm, the recognition errors have almost no effect
on the adapted models.

5.  PRONUNCIATION MODELLING

One of the greatest challenges in recognizing conversational
telephone speech lies in correctly modelling the informal,
generally highly reduced, pronunciations one encounters there.
There have been many reports on pronunciation modelling
efforts (see, for example, [9]), but performance has generally
been mixed: although reduced pronunciations may provide a
better match to actual speech data than the “standard” dictionary
pronunciations, they add a great deal of acoustic confusability to
the lexicon which may result in hurting as much as it helps.

We have run a number of experiments introducing reduced forms
of common words (our pronunciation dictionary already included
alternate forms for a number of words, but nothing close to the
diversity found in natural speech).  Initial results demonstrated
some gain, on the order of 1.0-1.5% absolute. However, we have
since discovered that most -- though not all -- of the benefit came
simply from introducing probabilities on the variant
pronunciations.  Formerly, all alternate pronunciations of a word
had been treated as equi-probable, but we realized that we would
need probabilities on the pronunciations in order to control how
frequently and in what contexts these highly reduced forms were
hypothesized.

Table 8 shows the effect of adding probabilities for alternate
pronunciations into the language model at the unigram and the
bigram levels.  The lexicon used is the same as that in the
preceding two sections: a 28k vocabulary including 32k
pronunciations.  No additional reduced forms were added. The
language model here is somewhat richer than that used above --
hence the lower baseline error rate.  It is an interpolation of
trigram models trained from Switchboard, CallHome, and
Broadcast News data.



CAIP SWB’95 CH’96 overall

no probs on prons 31.1 33.3 45.0 38.2
unigram probs 30.6 33.2 44.0 37.6
bigram probs 30.4 32.8 43.6 37.2

Table 8: Effect of imposing probabilities on alternate
pronunciations at the unigram and bigram levels.

6.  TESTING THE COMPLETE SYSTEM

The improvements described above were incorporated into a
single system fielded in the 1998 Hub 5 evaluation.  The system
uses the 44/24ST processing described in section 2.  The acoustic
models include 8500 full-triphone PELs with up to 96
components each, trained from 170 hours of data, including
about 12 hours from CallHome/English.  Matched sets of regular
and SAT models were constructed.

The system runs in several recognition stages:  A first recognition
pass is run using speaker-independent models and somewhat
tighter thresholds than in later passes.  The resulting recognition
transcripts are extracted and used for (unsupervised) adaptation
during the second pass.  This second pass adapts SAT models to
the recognition output.  It makes use of the jackknifing protocol
described above and uses a family of 8 transformations for each
conversation side, with transformation classes determined
automatically based on clustering PELs via a distance metric.
The resulting recognition from these second-stage models is then
used to adapt the SAT models once again, now without
jackknifing but using 7 expert-determined transformations per
side.  A third recognition pass is run to produce the final
recognition hypothesis.  All passes use the same interpolated
trigram language model referred to in section 5.

In Table 9, we compare the performance of the resulting system
to that of our 1997 evaluation system, which included the PLP
processing but none of the other improvements described here.
The test set is the 1997 Hub-5E evaluation set, composed of 40
5-minute conversations, 20 from Switchboard-II and 20 from
CallHome (about 38k words total).  (Switchboard-II is a
relatively new corpus currently being collected by the Linguistic
Data Consortium, similar in style to Switchboard-I but somewhat
more challenging.)

CH SWB-II overall

eval’97 system 57.4 39.9 48.9
eval’98 system
     pass 1
     pass 2
     pass 3

55.8
52.0
51.0

38.3
34.5
33.6

47.3
43.5
42.6

Table 9:  Comparison of word error rates for 1997 and
1998 evaluation systems on eval’97 data.

The table shows the benefit of the series of adaptation stages and
demonstrates the remarkable consistency of the improvements
across the two corpora.
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