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ABSTRACT

We study blind equalization of noisy MIMO-FIR systems
driven by white sources. We present a new second order
statistics (SOS) based approach which does not require the
knowledge of the channel order. This technique blindly
transforms a convolutive mixture of users into an instan-
taneous one. Thus, in the special case of a single user
(SIMO systems), an estimate of the input signal is read-
ily obtained. Computer simulations results illustrate the
promising performance of the proposed technique. We com-
pare our method with the multistep prediction (MSP) ap-
proach (in the context of SIMO systems), and evaluate the
algorithm capability in globally nulling the intersymbol in-
terference (ISI) for MIMO systems.

1. INTRODUCTION

The paper by Tong et al. [1] was a major breakthrough
in the area of blind channel equalization/identi�cation of
SIMO systems. It showed the feasibility of blind equal-
ization/identi�cation schemes based only on second order
statistics (SOS); see also [2, 10, 11]. The performance of
these subspace-based approaches tends to drop down signif-
icantly when the channel order is wrongly estimated. The
methods in [3, 4], based on linear prediction theory, are
formulated for the single-user case and o�er robustness to
overdetermination of the channel order. In this paper, we
present a SOS based blind equalization technique for the
general case of multiple users (MIMO systems), which is
robust to either under or over evaluations of the channel or-
der. The paper is organized as follows. Section 2 introduces
the data model and states the main assumptions. Section 3
describes the proposed blind equalization technique. Sec-
tion 4 shows simulation results assessing the performance
of our method for SIMO and MIMO systems. Section 5
presents the conclusions of this work.
Notation. Matrices (capital) and vectors are in boldface
type. Cn�m is the set of m� n matrices with complex en-
tries. R (A) and N (A) denote, respectively, the range and

null-space of matrix A. The notations (�)T and (�)� stand
for the transpose and Hermitian operator, respectively. The
symbols In and 0n�m stand for the n � n identity and the
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n�m all-zero matrices, respectively. jj�jj denotes the Schat-
ten 2-norm and � (t) is the Kronecker delta. Gn and Un
denote the general linear group and the unitary group of
Cn�n, respectively.

2. SYSTEM MODEL

Consider anM0th order P -input/L-output noisy linear FIR-
MIMO system, described by the equation

x (t) =

M0X
m=0

H (m) s (t�m) + b (t) : (1)

Here, x (t) 2 CL is the vector of system outputs, b (t) rep-

resents additive noise, and s (t) � [ s1 (t) s2 (t) � � � sP (t) ]T

contains the P input scalar signals; H (m) 2 CL�P , m =
0; 1; : : : ;M0 denote the matricial �lter coe�cients. By stack-
ing N �M0 successive samples according to

xN (t) �
�
x (t)T x (t� 1)T � � � x (t�N + 1)T

�T
bN (t) �

�
b (t)T b (t� 1)T � � � b (t�N + 1)T

�T
;

we have the equivalent model

xN (t) =HNsM (t) + bN (t) ; (2)

sM (t) �
�
s (t)T s (t� 1)T � � � s (t�M + 1)T

�T
, (M �M0+

N) and

HN�

2
664
H (0) � � � H (M0) 0L�P � � � 0L�P
0L�P H (0) � � � H (M0) � � � 0L�P
...

. . .
. . .

. . .
. . .

...
0L�P � � � 0L�P H (0) � � � H (M0)

3
775:

Equation (2) can also be rewritten as

xN (t) =

MX
m=0

HN (m) s (t �m) + bN (t) ; (3)

where HN (m) 2 CNL�P is the submatrix of the general-
ized Sylvester matrixHN obtained by retaining the columns
mP +1 to (m+1)P . We assume that: (A1) the number P
of users is known and that HN is full column-rank; (A2)
sp (t) is a zero-mean white unit-variance sequence and the
P users are uncorrelated with each other, i.e., Rs (�) =
E fs (t) s (t � �)�g = IP � (�); (A3) the noise process b (t)
is zero-mean, wide sense stationary, and uncorrelated with
s (t), with known autocorrelation matrices Rb (�).



3. BLIND EQUALIZATION ALGORITHM

Overview. We describe our blind equalization technique.
This is theoretically insensitive to under/over evaluations of
the system order M0 or, equivalently, of rank (HN). Con-

sider the data model in (3) and let bM be an arbitrary esti-
mate of M (obtained by the MDL or AIC criteria [5]). In

our approach, we blindly compute bM + 1 minimum vari-
ance distortionless response (MVDR) beamformers, Gm 2

CLN�P , m = 0; 1; : : : ; bM +1; the mth beamformer aims at
extracting the signal s (t�m) from the observations xN (t).
For the computation of each beamformer, the knowledge
of the channel order is not needed. The penalty for or-

der under-estimation ( bM < M) is that the last M � bM
delayed replicas of s (t) in (3) are not retrieved. This is
sub-optimal since we may be discarding the best replica, in
terms of signal-to-noise ratio (SNR). The penalty for order

over-estimation ( bM > M) is the unnecessary extra com-

putation; in fact, the last bM �M beamformers are mean-

ingless. However, in both cases, min(M; bM) � 1 valid in-
stantaneous mixtures of the P users are obtained for blind
source separation (BSS).

Algorithm. Our technique relies only on the SOS of xN (t)
and exploits the nested range property of the sucessive de-
noised correlation matrices R (�) � RxN (�) � RbN

(�),

� � 0. We obtain the bM +1 beamformers in sequence. We
assume that we are at the mth stage (m �M), which aims
at computing the MVDR beamformer

Gm = argmin
G�HN (m) = IP

E
�
jjG�xN (t)jj2

	
:

This is given by

Gm = R�1xN (0)HN (m)
�
HN (m)�R�1xN (0)HN (m)

��1
:

(4)
We describe the steps involved in the computation of Gm.

Step 1: Determination of Bm: At the mth stage, we
have available the matrices Ti = HN (i)Qi, for i = 0, 1,
: : :, m� 1, where Qi 2 UP (see step 4 below for how this
stage generates Tm). Also, from (A2) it follows that the
range of R (m) is given by

R (R (m)) = span fHN (m) ;HN (m+ 1) ; : : : ;HN (M)g :
(5)

This is the nested range property we mentioned above. We
de�ne the matrix

Bm �

m�1X
i=0

TiT
�

i +R (m+ 1)R� (m + 1) :

It is readily seen that R (Bm) equals

spanfHN (0) ; : : : ;HN (m� 1) ;HN (m+ 1) ; : : : ;HN (M)g:
(6)

Notice that only HN (m) is missing in (6).

Step 2: Determination of Wm: We compute a matrix
Wm 2 CLN�P , which satis�es the zero-forcing equation

W�

mHN (i) = 0P�P ; (7)

for i 6= m. For this, we exploit the following theorem.

Theorem 1 Let A;B 2 Cn�n be positive semide�nite Her-
mitian matrices. Let R (B) � R (A), and dimR (A) =
dimR (B)+ l, where l denotes a positive integer. For � > 0,
de�ne C� = � (B+ �In)

�1A. Then,

C � lim
�!0

C� = UV�;

where U;V 2 Cn�l are full column-rank matrices, and U

spans R (A)
?

	 R (B), where
?

	 denotes the relative orthog-
onal complement.
Proof: See Appendix A.

We use the theorem with A = R (0) and B = Bm; C
is evaluated in practice as C ' C�, with � � 1. In our
case, rank (C) = P (recall equations (5) and (6)). Thus,
through a singular value decomposition (SVD) of C, we
obtain an isometry Wm 2 CNL�P (W�

mWm = IP ) which
veri�es R (Wm) = R (C) (the P columns of Wm are the
P dominant left-singular vectors of C). Notice that, since
R (C)?R (B), Wm satis�es indeed equation (7). Also, af-
ter some algebra, one proves thatKm �W�

mHN (m) 2 GP .

Step 3: Determination of Ym = KmUm: By notic-

ing that R (0) =
PM

i=0HN (i)H�N (i) and exploiting equa-
tion (7), it follows that

Sm �W�

mR (0)Wm =KmK
�

m:

Thus, the positive square root of Sm, say Ym � S
1=2
m , veri-

�es Ym = KmUm, where Um 2 UP . Also, Ym 2 GP .

Step 4: Determination of Tm = HN (m)Qm. We de�ne
the NL�NL matrix

Zm � R (0)WmY
��

m Y�1m W�

mR (0) = HN (m)H�N (m) :
(8)

The outer-product in (8) permits to determine HN (m) up
to a rotation ambiguity. Let Zm = V�V� be an eigen-
value decomposition (EVD) of Zm, where V 2 UNL and
� = diag (�1; �2; : : : ; �NL), with �1 � � � � � �P > �P+1 =

� � ��LN = 0: Let V = [V1V2 ]
�
V1 2 CNL�P

�
and �1 =

diag (�1; : : : ; �P ). Then, Tm � V1�
1=2
1 satis�es Tm =

HN (m)Qm, where Qm 2 UP .

Step 5. Determination of the MVDR beamformereGm = GmVm: Step 4 determines HN (m) up to an (un-
known) unitary matrix Qm. This permits to determine the
MVDR beamformer Gm in (4) up to a rotation, i.e.

eGm � R�1xN (0)Tm

�
T�mR

�1
xN (0)Tm

�
�1

= GmQ: (9)

Thus, the output of the beamformer in (9) is given by

zm (t) � eG�mxN (t) = Q�ms (t�m) + n (t), where n (t) ac-
counts for the residual ISI and noise. Notice that since Qm

is unitary, usage of eGm instead of Gm does not result in
loss of SNR. To recover the emitted symbols s (t�m) in
the samples zm (t), a BSS algorithm must be invoked, e.g.,
[6, 7, 8, 9]. In [11], a BSS algorithm exploiting the fact that
the mixing matrix is unitary is proposed.



4. COMPUTER SIMULATIONS

To illustrate the performance of our technique, which we re-
fer to as the blind MVDR (BMVDR) approach, we present
the results of numerical simulations in two distinct scenar-
ios: (i) the single-user case (SIMO), and (ii) the multi-user
case (MIMO). In both cases, the noise b (t) in the data
model (1) is taken to be spatio-temporal white Gaussian

noise; SNR � E
�
jjy(t)jj2

	
=E
�
jjb(t)jj2

	
, where y (t) �PM0

m=0
H (m) s (t�m) is the noiseless output of the sys-

tem in (1). Also, the matrix C in Theorem 1, is computed
as C ' C� with � = 0:001.

Single-user. We consider a M0 = 4th order SIMO sys-
tem with L = 2 outputs. The �lter coe�cients are given
by HT (0) = [�1:25� 1:29j , �0:30� 0:02j ]T , HT (1) =

[2:54 + 1:46j , �1:21 + 1:52j ]T , HT (2) = [0:28 + 0:03j ,

0:13 � 0:60j ]T , HT (3) = [0:55� 0:34j , �0:79� 0:82j ]T

and HT (4) = [0:74 + 1:43j , �0:41� 0:83j ]T . The SIMO
system is driven by a QPSK sequence and N = 7 sucessive
observations x (t) are stacked to form the samples xN (t).
The number of observations is T = 400. The input sig-
nal is estimated as the output of the m = 4th MVDR

beamformer eGm { recall equation (9). The channel order is

overestimated as bM = 6. We compare our technique with
the multistep prediction (MSP) approach in [4]. Moreover,
for the MSP approach we use the exact prediction �lters,
whereas for the BMVDR approach we estimate the correla-
tion matrices from the available samples. The SNR is varied
between SNRmin = 10dB and SNRmax = 25dB, in steps of
�SNR = 5dB. For each SNR, K = 100 independent Monte-
Carlo simulations were performed. At the end of the kth ex-
periment, the variance at the output of each equalizer, i.e.,
�2k;msp and �2k;bmvdr, is computed. This permits to obtain

an average variance for each SNR, �2msp = mean
�
�2k;msp

	
and �2bmvr = mean

�
�2k;bmvdr

	
; mean f�g is the sample mean

operator. The probability of symbol misclassi�cation is
then computed from �2msp and �2bmvdr. In �gure 1, we plot
the probabilities of error thus obtained against the SNR. As
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Figure 1: Probability of error for the MSP (dashed) and
the BMVDR (solid) approaches

seen, the BMVDR approach yields better symbol estimates,
specially at the lower SNRs considered.

Multi-user. We consider a M = 2th order MIMO system,
with L = 10 outputs, driven by P = 3 BPSK users. The
MIMO �lter coe�cients are samples of a zero-mean complex
Gaussian random variable with power �2 = 2. The input
multi-user signal s(t) is estimated as the output of the m =

2th MVDR beamformer, i.e., ŝ (t) = eG�2xN (t), where N =
1. Each user scalar signal sp (t) is then extracted from ŝ (t)
by a MVDR beamformer based on the exact mixing matrix.
We consider T = 800 observations. Figures 2 and 3 show
the result of a typical run of our scheme under SNR =
15dB. Figure 2 displays the output of the �rst unequalized
channel (i.e., the �rst component of the multichannel vector
x(t)), and �gure 3 shows the signal estimate for the �rst
user (similar results hold for the remaining users). As seen,
the eye of the output constellation is signi�cantly opened.
To assess more precisely the performance of the proposed
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Figure 2: Output of the �rst unequalized channel
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Figure 3: Signal estimate for the �rst user

scheme, we varied the SNR between SNRmin = 10dB and



SNRmax = 25dB, in steps of �SNR = 2:5dB. For each
SNR, K = 100 Monte-Carlo trials were performed. The
bit-error rate (BER) is then evaluated for each user as in
the SIMO case (see above). Figure 4 presents the results
obtained. The signal replicas are clearly separated, and the
ISI per user well rejected.
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Figure 4: Bit error rate (BER) for user p=1,2 and 3

5. CONCLUSIONS

We proposed a blind equalization technique for MIMO sys-
tems, driven by white sources. It relies only on the SOS of
the system outputs, and does not need an estimate of the
channel order. We blindly compute several MVDR beam-
formers, each one matched to a distinct multichannel �lter
tap. The penalty for under/over estimation of the channel
order is fewer delayed replicas of the input signal to pro-
cess or some meaningless beamformers, respectively. In any
case, the algorithm always yields valid instantaneous mix-
tures of the users' signals. Computer simulations illustrated
the good performance of the proposed technique, either in
the context of a single-user (SIMO) (compared to the MSP
approach) or in the case of multi-users (MIMO).
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A. PROOF OF THEOREM 1

Suppose that dimR (B) = r. Let A = QR and B = S�S�

be truncated QR and eigenvalue decompositions of A and
B, respectively; here, Q 2 Cn�(r+l) and S 2 Cn�r are
isometries, R 2 Gr+l and � = diag (�1; : : : ; �r), with �i > 0
for i = 1; : : : ; r. Let the columns of U 2 Cn�l be an or-

thonormal basis for R (A)
?

	 R (B), i.e., eQ = [SU ] spans

R (A), and U�S = 0l�r. Since Q and eQ are isometries
spanning the same space, there exists Z 2 Ur+l such that

Q = eQZ. Write Y � ZR 2 Gr+l as

Y =

�
W�

V�

�
;

whereW 2 C(r+l)�r and V 2 C(r+l)�l. BothW and V are
full column-rank matrices, and A = SW�+UV�. Finally,

C = lim
�!0

� (B+ �In)
�1A

= (In � SS
�) (SW� +UV�)

= UV�:


