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ABSTRACT

Markov chain Monte Carlo (MCMC) methods are powerful
simulation-based techniques for sampling from high-dimensional
and/or non-standard probability distributions. These methods have
recently become very popular in the statistical and signal process-
ing communities as they allow highly complex inference problems
in detection and estimation to be addressed. However, MCMC
is not currently well adapted to the problem of marginalmaxi-
mum a posteriori(MMAP) estimation. In this paper, we present a
simple and novel MCMC strategy, called State-Augmentation for
Marginal Estimation (SAME), that allows MMAP estimates to be
obtained for Bayesian models. The methodology is very general
and we illustrate the simplicity and utility of the approach by ex-
amples in MAP parameter estimation for Hidden Markov models
(HMMs) and for missing data interpolation in autoregressive time
series.

1. INTRODUCTION

When performing complicated statistical signal detection and es-
timation, probabilistic models are typically specified that involve
high-dimensional unknown parameter vectors. Very often the val-
ues of some of these parameters are not required in the inference
task, for example the amplitude of frequency components in a fre-
quency estimation application. Within a Bayesian setting, these
so-called nuisance parameters are integrated out from the poste-
rior distribution using the marginalization identity and inference is
then performed in terms of only the required parameters [10], [12].

Consider the following Bayesian model:� =(�1; �2) is a ran-
dom parameter with prior distributionp (�) and the likelihood of
the observationsy is given byp (yj �). Bayesian inference is
based on the posterior distributionp (�jy) ; which is given by
Bayes’ theorem:

p (�jy) / p (yj �) p (�) : (1)

In this paper, the aim is to obtain the marginal MAP (MMAP)
estimator for�1:

�MMAP
1 = argmax

�1

p (�1jy) (2)

where the nuisance parameters�2 have been integrated out:

p (�1jy) =

Z
�2

p (�1; �2jy)d�2: (3)

Estimating�MMAP
1 is a complex problem as typically neither the

maximization (2) nor the integration (3) can be performed analyt-
ically.

In order to solve problems of this type, algorithms such as
Expectation-Maximization (EM) and its stochastic variants [3],
[16] are available. These methods aim to maximize the marginal
likelihood for the required parameters. They are easily adapted for
Bayesian MMAP estimation by the introduction of a prior penal-
ization term in the maximization step. However, these EM-based
methods are prone to estimate local rather than global modes of
the marginal posterior distribution and are not easily adapted to
the highly complex modelling requirements of many statistical sig-
nal processing problems. MCMC methods [5], on the other hand,
which can be routinely applied to problems of high complexity,
have not until now been developed for the solution of the MMAP
estimation problem.

MCMC methods are a broad class of algorithms for sampling
from complex, non-standard probability distributions. Since their
introduction in applied statistics at the beginning of the 90’s, they
have become very popular as they allow for the solution of com-
plex problems in Bayesian signal processing [10] and statistics
[12], [13] where typically the posterior distributions and estimators
of interest do not admit any closed form solution. In a Bayesian
framework, the key idea of MCMC methods is to run a homoge-
neous Markov chain whose invariant distribution is the posterior
distribution of interest. Under mild conditions on its transition
kernel the Markov chain converges towards the required target
distribution[15]. One can then use the simulated samples to es-
timate the posterior distribution and its features such as posterior
means and variances. However, in their usual form these meth-
ods cannot be used to perform optimization of marginal posterior
distributions.

In this article, we propose an original MCMC-based strategy
for maximization of marginal posterior distributions. This strat-
egy introduces an artificially augmented probability model, whose
sampling leads to MMAP estimation of the required parameters.
The algorithm is conceptually very simple and straightforward to
implement in most cases, requiring only small modifications to
MCMC code written for the original model. In its basic form the
algorithm is directly applicable only to the standard MMAP prob-
lem. We believe however that it will be easily adaptable to solving
more general inference with respect to Bayesian utility functions,
using the extended utility variable methods of M¨uller [9].

The paper is organized as follows. In Section 2 the new MCMC
strategy is described for the solution of the MMAP problem, which
we call the State Augmentation for Marginal Estimation (SAME)
method. In Section 3, the method is applied to MAP parameter



estimation of hidden Markov models for blind equalization of dig-
ital communications channels. In Section 4 we give an example
of estimating missing data in autoregressive time series, a problem
which occurs in speech and audio processing [8][7][6].

2. MCMC STRATEGIES

2.1. Standard MCMC approaches

The standard MCMC approach draws a large numberN of (depen-

dent, approximate) samples
n�

�
(i)
1 ; �

(i)
2

�
; i = 1; : : : ; N

o
from

the joint posterior distributionp (�1; �2jy). As a consequence,n
�
(i)
1 ; i = 1; : : : ; N

o
are drawn from the marginal distribution

p (�1jy). If p (�1jy) can be evaluated analytically, a possible
estimate for�MMAP

1 is then simply that�(i)1 which has maximum

posterior probabilityp
�
�
(i)
1

���y
�

. This method is not efficient in

the sense that random samples fromp
�
�
(i)
1

���y
�

only rarely ex-

plore the vicinity of the mode, unless the posterior has large prob-
ability mass around the mode – much computation is thus wasted
exploring areas of no interest for MMAP estimation. Moreover
the marginal posteriorp (�1jy) will often be unavailable in closed
form; then histogram or kernel methods must be employed. These
are unsuitable for high-dimensional parameters, being very sensi-
tive to the choice of grid and kernels functions.

2.2. State Augmentation for Marginal Estimation (SAME)

We present here an alternative simulation-based strategy that is re-
lated to the standard simulated annealing algorithm. As in simu-
lated annealing we replace the target distributionp (�1jy) by the
distribution p (�1jy) / p (�1jy). It is well known that as
 ! +1, sop (�1jy) becomes concentrated on the set of global
maxima ofp (�1jy). In the classical simulated annealing frame-
work, sampling fromp (�1jy) is realized by using a Metropolis-
Hastings or a Gibbs sampler. However, such an algorithm cannot
be developed when one is not able to evaluatep (�1jy) analyti-
cally (up to a normalizing constant), and may be hard to construct
effectively even when the marginal is available.

We propose here a novel approach based on a different idea
which has very general applicability. It consists of defining an
artificial probability model whose marginal distribution is the con-
centrated distributionp (�1jy). If samples�(i)1 can be drawn
from this concentrated distribution, then as becomes large the
samples will be concentrated around the mode. We now show how
to achieve this by artificially replicating the nuisance parameters
in the model. Let us augment the model with 2 N

� artificial
replications of�2, denoted by�2 (1) ; : : : ; �2 (). Each of these
replications is now treated as a distinct random variable in its own
right and the following joint distribution is defined:

q (�1; �2 (1) ; : : : ; �2 ()jy) /
Y

k=1

p (�1; �2 (k)jy) (4)

By construction, the marginal for�1 in this distribution is

q (�1jy) = p (�1jy) / p (�1jy) : (5)

So, if we build a MCMC algorithm in the augmented space, with
invariant distributionq (�1; �2 (1) ; : : : ; �2 ()jy), then the sim-

ulated sequence
n
�
(i)
1 ; i 2 N

o
will be drawn from the marginal

posterior of interest,p (�1jy). An important point here is that
when a MCMC sampler is available to sample fromp (�1; �2jy)
then it is usually very easy to construct a MCMC sampler to sam-
ple fromq (�1; �2 (1) ; : : : ; �2 ()jy), especially ifp (�1jy; �2)
is a distribution from the exponential family, or when it can be
simulated usingslice sampling(see [13]).

To implement the algorithm practically, it is likely to be beni-
ficial to employ a cooling schedule in a similar fashion to standard
simulated annealing. Thus would be increased over iterations,
i.e.  =  (i) with lim

i!+1
 (i) = +1 and perhaps (1) = 1.

Choice of optimal cooling schedules remains a topic for future
work. As mentioned already, the scheme we present is not an al-
gorithm but a general strategy that has to be adapted on a case by
case basis. In the following sections, we detail possible schemes
for its applications to two signal processing problems.

3. APPLICATION TO BLIND EQUALIZATION OF
COMMUNICATIONS CHANNELS

3.1. Signal Model and Estimation Objectives

The channel input sequencext is assumed to be an i.i.d. sequence
with known (discrete) state spaceX . This signal is passed through
a FIR channel of lengthL. We denote its impulse response by
h =[h0; : : : ; hL�1]

T and the state vector at time sampling instant
t by xt = [xt; : : : ; xt�L+1]

T. The observed signalyt is the base-
band output of the channel corrupted by additive noisent:

yt = h
T
xt + nt

wherent is assumed to be white and Gaussian with variance�2.
(xt; yt)t2Nis a hidden Markov model [11]. The signalxt and the
parameters�1=

�
h; �2

�
are assumed unknown.

In a fully Bayesian framework, we assign a prior distribu-
tion not only to the signalxt, but also to the unknown parameters
�1. For the channel and noise variance, a classical normal-inverse
gamma prior distribution is selected, i.e.hj�2 � N

�
0; �2�0

�
and�2 � IG (�0=2; �0=2), with �0 regular.

Given the set of observationsy1:T , fy1; : : : ; yT g, our aim
is to estimate�1 in a MMAP sense, i.e. obtaining�MMAP

1 =
argmaxp (�1jy1:T ). In this example, there is no integration prob-
lem asp (�1jy1:T ) can be evaluated pointwise up to a normalizing
constant. However, it is well-known that maximizing this distribu-
tion is a very complex problem. The most popular method is with-
out doubt the EM algorithm. However this deterministic method
is quite sensitive to initialization, which is why several stochastic
versions of the EM have been proposed in the literature, see [1]
for a review of these methods applied to the blind deconvolution
problem.

3.2. MAP parameter estimation

We first present a standard MCMC algorithm to sample from
p (�1jy1:T ) and then we show how this algorithm can be straight-
forwardly modified to a SAME algorithm which optimizes
p (�1jy1:T ).

3.2.1. Algorithms

To sample fromp (�1jy1:T ) we treat the unobserved state se-
quence as nuisance parameters, i.e.�2 = x1:T , fx1; : : : ;xT g



and perform MCMC to draw samples from the joint distribution
p (�1;x1:T jy1:T ). To sample fromp (�1;x1:T jy1:T ), we use a
Data Augmentation MCMC algorithm:

Standard MCMC

1. Initialization, i = 0. Set randomly �
(0)
1 .

2. Iteration i, i � 1

� Sample x(i)1:T � p
�
x1:T jy1:T ; �

(i�1)
�

.

� Sample �
(i)
1 � p

�
�1jy1:T ;x

(i)
1:T

�
.

Now, following the strategy presented in Section 2.2, the mod-
ified algorithm to optimizep (�1jy1:T ) proceeds as follows.

SAME algorithm

1. Initialization, i = 0. Set randomly �
(0)
1 .

2. Iteration i, i � 1

� Sample x
(i)
1:T (j) � p

�
x1:T (j)jy1:T ; �

(i�1)
1

�
for j =

1; : : : ;  (i).

� Sample �
(i)
1 � q(i)

�
�jy1:T ;x

(i)
1:T (1) ; : : : ;x

(i)
1:T ( (i))

�
.

where (i) is an increasing sequence of positive integers satisfy-
ing lim

i!+1
 (i) = +1.

3.2.2. Implementation issues

To implement these algorithms, it is necessary to be able to sample
from p (x1:T jy1:T ; �1), p (�1jy1:T ;x1:T ) and
q(i) (�1jy1:T ;x1:T (1) ; : : : ;x1:T ( (i))). Sampling from
p (x1:T jy1:T ; �1) can be realized using the efficient forward filtering-
backward sampling method [2], [4] whose computational com-
plexity isO (T ). Forp (�1jy1:T ;x1:T ), one obtains

hj�2 � N
�
m; �2�

�
�2 � IG

�
(�0 + T )=2; (�0 + y1:Ty

T

1:T �m
T��1m)=2

�

where ��1 = ��10 +
TX
t=1

xtx
T

t and m =�
TX
t=1

xtyt

Sampling fromq(i) (�1jyT ;x1:T (1) ; : : : ;x1:T ( (i))) can be
easily done since

q(i) (�1jyT ;x1:T (1) ; : : : ;x1:T ( (i)))

/
Y

k=1

p (yj �1;x1:T (k)) p (�1)

One obtains

hj�2 � N
�
m (i) ; �2� (i)

�
�2 � IG ( (i) ((�0 + T )=2) + ( (i)� 1) (L=2 + 1) ;

( (i)
�
�0 + y1:Ty

T

1:T

�
�m

T (i) ��1 (i)m (i))=2
�

where ��1 (i) =  (i) ��10 +

(i)X
k=1

TX
t=1

xt (k)x
T

t (k)

and m (i) = � (i)

(i)X
k=1

TX
t=1

xt (k) yt

The resulting stochastic optimization method has a nice interpre-
tation for this simple example and also the interpolation example
of the next section. At the first iteration ( (1) = 1), we have
the standard data augmentation algorithm and, as (i) ! +1,
the algorithm operates as a stochastic EM algorithm.Simulations
show that the method is very effective for this model. For example,
see figure 1 in which we have plotted the log-posterior probability
log(p (�1jy1:T )) against iteration number for both standard EM
(dotted line) and the SAME (solid line) algorithm. EM has con-
verged very fast to a local probability maximum. Note however
that the SAME algorithm is slower to converge for the cooling
schedule we chose ( (i) = i) but achieves a much more probable
final solution, which is indicative of the power of the approach.
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Figure 1: Log posterior probablity vs. iteration number for the
communications model using EM (dotted) and SAME (solid) al-
gorithms

4. APPLICATION TO MISSING DATA ESTIMATION IN
AUTOREGRESSIVE TIME SERIES

We now consider a problem which finds application in the replace-
ment of missing data packets in speech signals and the restoration
of audio time series [8][7][6]. The data sequencext is assumed
to be drawn from an autoregressive (AR) process with coefficients
a =[a0; : : : ; aP�1] and the state vector at time sampling instantt
is denoted byxt = [xt; : : : ; xt�P+1]

T. The model is written as

xt = a
T
xt�1 + et;

whereet is assumed to be a white, Gaussian excitation sequence
with variance�2. The signalxt is assumed unobserved (miss-
ing) at sampling pointsI = fi1; :::; ilg � f1; :::; Tg. The ob-
served data isx�I , fxt; t 2 f1; :::; Tg � Ig, the missing data
is xI , fxt; t 2 Ig and the parameters�2=

�
a; �2

�
are assumed

unknown. Exactly as above, we assign a normal-inverse gamma
prior distribution for�2=

�
a; �2

�
. In this case, however, we wish

to estimate the missing data,�1 = xI , in the MMAP sense. A
data augmentation MCMC algorithm is easily constructed for this
problem [10][7][6] that has a very similar structure to the above
equalization scheme, involving draws fromp (xI jx�I ; �2) and
p (�2jx1:T ), which are multivariate normal and normal-inverse
gamma distributions, respectively.p (xI jx�I ; �2) can be sampled
efficiently using forward-backward simulators [2] in cases where
the number of missing data points is large. In order to obtain



the corresponding SAME algorithm, we augment the probability
model with artificial�2 variables and draw samples from
q(i) (xI jx�I ; �2(1); : : : ; �2 ( (i))) andp (�2jx1:T ). The first
termq(i) (xI jx�I ; �2(1); : : : ; �2 ( (i))) retains a similar mul-
tivariate Gaussian form to its counterpartp (xI jx�I ; �2) and so
is readily implemented using only minor code modifications. The
formulae are similar in structure to the equalization example, so
we do not repeat the details here.

For this model we test the new method in a difficult scenario
where 50% of the data are missing in the middle of a short block
of lengthT = 40, extracted from a real music signal. The AR
model order is fixed atP = 9 and once again both EM and SAME
algorithms are applied to the data. The starting guess for the miss-
ing data was the all-zero vector. Very diffuse priors approaching
the non-informative limit are chosen. In this case we also com-
pare results with the standard Gibbs sampler data augmentation
algorithm, used here to estimate the posterior mean of the missing
data. The top plot in figure 2 shows the estimated waveforms for
the three methods. The bottom plot shows the posterior probabil-
ities against iteration number, as before. It is clear from this that
the three methods give very different results and that the SAME al-
gorithm finds a significantly more probable solution than either of
the other techniques. It is also clear from the probability plots that
the Gibbs sampler would be quite inappropriate for performing
optimisation of this model since it virtually never achieves prob-
abilities close to the maximum. EM has converged to a local but
not global stationary point.
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Figure 2: Simulations for missing data in AR model

4.1. Discussion

In this article, we have presented an original simulation-based strat-
egy to maximize marginal posterior distributions. This method
is closely linked to simulated annealing. However, contrary to
classical annealing algorithms, it is based on the introduction of
an artificial augmented probability model. Once a MCMC algo-
rithm is available to sample from a posterior distribution, the pro-
posed algorithms are very simple to implement in most cases. This
methodology has been applied to statistical signal processing prob-
lems. Computer simulations demonstrate the effectiveness of our
method compared with EM and standard MCMC approaches. We
have chosen to demonstrate the new methods for models which

have an analytic EM algorithm and for which the posterior proba-
bility is available in closed form. This allows a direct comparison
to be made with EM, which is aimed at solving exactly the same
problem as our SAME procedure. Some significant improvements
have been demonstrated for testing datasets. However, we envis-
age that the real benefits of this new method are that it can be rou-
tinely applied to more complex models where standard MCMC
but not EM algorithms are available. We have tested the SAME
algorithm using such models and found the results to be equally
promising and will report on these results more fully in a later
publication.
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