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ABSTRACT   
A syntactic approach of the well-known N-grams models, the
K-Testable Language in the Strict Sense (K-TSS), is used in
this work to be integrated in a Continuous Speech Recognition
(CSR) system. The use of smoothed K-TSS regular grammars
allowed to obtain a deterministic Stochastic Finite State
Automaton (SFSA) integrating K k-TSS models into a self-
contained model. An efficient representation of the whole
model in a simple array of and adequate size is proposed. This
structure can be easily handled at decoding time by a simple
search function through the array. This formulation strongly
reduced the number of parameters to be managed and thus the
computing complexity of the model. An experimental
evaluation of the proposed SFSA representation was carried out
over an Spanish recognition task. These experiments showed
important memory saving to allocate K-TSS Language models,
more important for higher values of K. They also showed that
the decoding time did not meaningfully increased when K did.
The lower word error rates for the Spanish task tested were
achieved for K=4 and 5. As a consequence the ability of this
syntactic approach of the N-grams to be well integrated in a
CSR system, even for high values of K, has been established.

1 . INTRODUCTION

Statistical methods have been extensively used to generate
Language Models (LM) to be integrated in large-vocabulary
and/or Continuous Speech Recognition (CSR) Systems. They
are based on the estimation of the probability of observing the
N preceding lexical units (N-gram models): P(w1/w1...wn-1).
However in practice the use of this kind of models is reduce to
low values of N. Nevertheless, it has been shown [1] that the
probability distribution obtained through an N-gram model is
strictly equivalent to the distribution obtained by a stochastic
grammar generating a certain subclass of regular languages
called K-Testable Language in the Strict Sense (K-TS) (K stands
for the same meaning as N in N-grams). This probability
distribution [2] [3] obtained from a training set must be
modified to also consider those events not seen in the training
corpus. So that, a syntactic back-off smoothing performing
the integration of K K-TS models in a unique self-contained
smoothed model was proposed in [4].

The aim of this work was to show the ability of this syntactic
approach to be well integrated in a CSR system. For this
purpose an efficient representation of the model in a simple
array is proposed in this paper. This structure can be easily
handled at decoding time by a simple search function through
the array allowing models with high values of K be integrated
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in a CSR system.

The use of stochastic automata for language modeling has also
been recently proposed [5] [6] [7] with the same aim to handle
accurate language models in a one-step decoding procedure.
However, the stochastic automata proposed in [5] and [7] are
finite networks where the recognizer has to explore several
word hypotheses due to their non deterministic nature. The use
of K-TSS regular grammars allowed us to obtain a deterministic
Stochastic Finite State (SFSA) that leads to get a simply
maximum likelihood estimation of the probability of each
transition.

The definition of the SFSA is provided in Section 2. In Section
3 the syntactic back-off smoothing technique is applied to the
SFSA. In Section 4 the smoothed SFSA was represented in an
efficient way as a simple array, easy to be managed in a CSR
system. Finally, in Section 5 memory requirements and
recognition experiments are shown.

2 . The Stochastic Finite State
Automaton (SFSA)

The SFSA is a self-contained model that integrates K k-TS
automata [6], where k=1,...,K , in a unique automaton. Thus,
the model was composed by k submodel, each one representing
a k-TS LM. The whole automaton is defined by a five-tuple (Σ,

Q
K, q0, qf, δ

K) where: Σ = { wj}, j = 1...|Σ| is the vocabulary, that

is the set of words appearing in the training corpus; QK is the
state set of the automaton (Each state represents a string of
words wi-kwi-(k-1)...wi-1, k = 1...K-1, with a maximum length of
K-1, where i stands for a generic index in any string w1...wi...
appearing in the training corpus, such a state is labelled as
wi k

i
−
−1 , see Figure 1); q0 and qf ∈ Q

K  are the initial and final

states and δK is the transition function δK : QK × (Σ) → QK ×
[0...1]. δK(q, wi) = (qd, P(wi/q)) defines a destination state qd ∈
Q

K and a probability P(wi/q) ∈  [0...1] to be assigned to each

element (q, wi) ∈  QK × Σ. Each transition represents a k-gram,
k = 1...K ; it is labelled by its last word wi and connects two
states labelled up to with K-1 words. As an example,
transitions corresponding to strings of words of length K
connecting states associated to string lengths equal to K-1 are
defined as:

δ K
(w

i−1
,w ) = (w

i
,P(w / w

i−1
))i−( K−1) i i −( K−1)+1 i i −( K −1)

(1)

The whole and detailled definition of the Automaton is
provided in [3]. Figure 1 represents the K-grams wi-(K-1)wi-(K-1)-

1...w(i-1) and wi-(K-1)+1wi-(K-1)...wi labelling two states of the
automaton. When wi is observed an outgoing transition from
the first to the second state is set and labelled by wi .
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Figure 1: Two states of the SFSA representing two K-grams. Transitions
are labelled by words appearing in the training sample after the K-gram
labbelling the source state.

The model defined above is a deterministic and hence
unambiguous stochastic finite state automaton [3]. The
unambiguity of the automaton allows to obtain a simply
maximum likelihood estimation of the probability of each
transition δ K
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 is the number of times the word wj

appears at the end of the K-gram wi-(K-1)...wi-1wj, that is the
count associated to the transition labelled by wj coming from

state labelled as wi K
i
− −
−
( )1
1 . This probability distribution must be

modified to also consider the events not seen in the training
corpus

3 . The Smoothed SFSA
In previous works [4] a syntactic back-off smoothing
procedure was developed. Under this formalism the probability
P(wi/q) to be associated to a transition δK(q, wi) = (qd, P(wi/q))
is estimated according to:
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where: Σq is the vocabulary associated to state q and consists of
the set of words appearing after the string labelling state q  in
the training corpus, i.e. words labelling the set of seen
outgoing transitions from state q; N(w/q) is the number of
times that word w appears after the string labelling state q;
N q N w q

w q

( ) ( / )=
∀ ∈
∑

Σ
, |Σq| is the size of Σq and P(wi/bq) is the

estimated probability associated to the same event in the (k-
1)-TS submodel; thus, if state q is labelled as wi k

i
−
−1  then state bq

is labelled as wi k
i
− +
−

1
1 .

The smoothing function (Equation (3)) estimates |QK| × |Σ|
parameters that need large amount of space to be allocated, so
that, it is prohibitive even for small vocabulary tasks.
Nevertheless, the Smoothed SFSA can be represented in such a
way that only transitions seen at training time need to be
explicitly represented.

In Equation (3) the probabilities to be associated to the set of
words appearing after the string labelling state q in the

training corpus - the vocabulary of the state Σq - are explicitly

estimated calculating N(w/q) and N(q). The remaining |Σ| - |Σq|
transition probabilities corresponding to those events not
represented in the training corpus, are estimated according to
more general probability distributions in k-TSS models, with
k<K. However these transitions do not need to be explicitly
estimated nor represented at each state. The structure of the
previous automaton along with the back-off smoothing
technique leads to group them into a unique transition to the
back-off state bq, which can be found in a more general sub-
model. Taking into account that the stochastic condition must
be satisfied, the probability to be assigned to the transition
from each state to its back-off state, P(bq/q), can be easily
estimated as:

P b q
N q P w bq

q

q q
w q

( / )
( ) ( ' / )

'

=
∑

+ ∑ −
∀ ∈∑
∑

1

1
(4)

This transition connects each state q with its back-off state bq

which represents the same event in the (k-1)-TS model. Then,
the probability to be associated to each event not represented
in the training corpus P(wj/q) ∀ wj ∈ (Σ '−Σq) is estimated
according to:

P w q P b q P w b wj q j q j q( / ) ( / ) ( / )= ∀ ∈ ∑ − ∑( ) (5)

This formulation reduces the number of parameters to be
handled from |QK| × |Σ| to |QK| × (|Σq|+1). Finally, this
smoothing approach is incorporated to the previous definition
of the SFSA to obtain a Smoothed SFSA. The Smoothed SFSA
is defined by a five-tuple (Σ, QK, q0, qf, δ

K) where only δK needs

to be modified. Each state of the automaton q ∈  QK should add a
new transition to its back-off state bq:

δ K
q qq U b P b q( , ) ( , ( / ))= (6)

where U represents any unseen even associated to state q which
is labelled by a word wj ∈ (Σ−Σ q). The back-off state bq

associated to each state q can be found in the (k-1)-TS
submodel.

Figure 2 shows such a structure for a state q labelled as wi K
i
− −
−
( )1
1 .

The transitions labelled by the |Σq| words observed at training
time after the K-gram labelling q connect it to other states in
the same K-TS submodel. Transition labelled by U connects
state q to its back-off state, wi K

i
− − +
−
( )1 1
1 in the (K-1)-TSS

submodel.

4 . An efficient representation of the
SFSA

The main advantage of the previous formulation is that it leads
to a very efficient representation of the model parameters
learned at training time.

4.1.- An array allocating the Smoothed SFSA.

A simple array was used to allocate all the parameters of the
model. A state of the automaton is represented by |Σq|+1 array
rows, each of one representing an outgoing transition. Each
position of the array represents a pair (q,w) where q ∈  QK and
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Figure 2: Transitions labelled by seen events connect each state to states
in the same K-TSS submodel. Transition labelled by unseen events
connnect it to its back-off state in the (K-1)-TSS submodel.

w ∈  Σq ∪ { U} . It consists of four elements:

- a short integer, which represents a transition labelled by a
word w ∈  Σq or by the symbol U that stands for any unseen
event.

- a double, which represents P(wi/q) ∀ wi ∈  Σq or P(bq/q) for
unseen events.

- a short integer, which represents the value of |Σq|.

- a short integer, which represents the explicit link to the first
child of q or to its back-off state bq

Figure 3 shows the allocation of the portion of the automaton
showed in Figure 2. In this table the destination states
corresponding to seen events can be found in positions
corresponding to states of the same K-TSS submodel, down in
the array (103, 105, etc.), whereas the back-off destination
state is found in a position corresponding to a state in the (K-
1)-TSS submodel, up in the array (76).

4.2.- The transition function δ as a s imp le
search function through the array.

To complete the representation of the Smoothed SFSA the
transition function δ of the Automaton defined in Section 3

should be proposed, and represented, for each state q∈ Q
K and

for each w∈Σ . This transition function defines a destination
state qd and a probability P(w/q) associated to each pair (q,w)

∀ q∈ Q
K and ∀ w∈Σ ':

δ ( , ) ( , ( / )) 'q w q P w q q Q w q Qd
K

d
K= ∀ ∈ ∧ ∀ ∈ ∑ ∈ (7)

When seen events appear, the destination state qd can be found
directly as the destination index of the array position (w,q). In
the same way the value of P(w/q), computed according to
Equation (3) for w∈Σ q, can be directly found as the probability

pos # q label(q)
  
∑q label(w) P(w/q) destination

.

.
8 4 3 2 [wi-(K-1),wi-(K-1)-1,...wi-1] 6 w1 P(w1/q) 103
8 5 w2 P(w2/q) 105
.
.
8 9 w6 P(w6/q) 113
9 0 U P(U/q) 7 6
.
.

Figure 3: The array allocation of the portion of the Smoothed SFSA in
Figure 2. Only the outlined elements need to be handled. However, some
additional columns have also be included to clarify the meaning of each
component.

value at the array position (w,q). However when unseen events
appear both qd and P(w/q) values are not directly found in the
array and a simple search function through the array is required.

This function, represented in Figure 4, search backwards across
the back-off states, i.e. transitions through the U symbol,
until the word w is found as a seen event for a state q in a lower
level (k<K), i.e., w∈Σ q. State q will be then the searched
destination state qd. The P(w/q) value should be computed
according to Equation (8) in this case. Thus, Equation (3) is
recursively calculated while qd is found by the search function.

Function δ (q∈ Q
K

; w∈Σ ): (dt∈ Q
K

; P∈ [0...1]);

var q_aux∈ Q
K

; P_aux∈ [0...1];
begin

if w∈Σ q then δd←array_dest[q,w];   {seen events}
δP←array_prob[q,w]

 else q_aux←array_dest[q,U]; {unseen events}
P_aux←array_prob[q,U]
while w∉Σ q_aux do
  q_aux←array_dest[q_aux,U];
  P_aux← P_aux × array_prob[q_aux,U]
end_while
δd ←array_dest[q_aux,w];
δP ←array_prob[q_aux,w]

end_if
end_ δ.
Figure 4: A simple search function through the proposed array to
compute Equation (7). dd stands for the destination state qd and dP for
the probability P(w/q).

5.- Experimental assessment.

An experimental evaluation of the proposed Smoothed SFSA
representation was carried out over a Spanish corpora. In
Section 5.1, an evaluation of the memory requierements of the
model is presented. Then the model was integrated in a CSR
system (Section 5.2) showing word error rates and decoding
time requiered by several K-TSS models.

For these experiments a task-oriented Spanish corpus
(BDGEO)  [8] consisting in 82,000 words and a vocabulary of
1,213 words was used. This corpus represents a set of queries to
a Spanish geography database. This is a specific task designed
to test integrated systems (acoustic, syntactic and semantic
modelling) in automatic speech understanding. The training
corpora consisted in 9150 sentences.

5.1.- Smoothed SFSA allocation

Some experimental measurements were carried out to evaluate
the save of memory achieved with the proposed structured to



allocate the Smoothed SFSA. For comparison purposes the
direct structure represented by a full array of |Q

K| × |Σ|+1
positions was also considered. In such a case each position
consisted of two elements representing the pair (destination
state, transition probability associated). Table 1 shows the
memory requirements for several values of K. The number of
states of the SFSA, |Q

K|, is also provided.

Table 1: Memory required to allocate the Smoothed SFSA for BDGEO
application task and  different Ks.

K |QK| full array proposed array

2 1,213 17.6 Mb 0.13 Mb
3 7,479 108.8 Mb 0.43 Mb
4 21,551 313.6 Mb 0.95 Mb
5 42,849 623.7 Mb 1.69 Mb
6 69,616 1013.3 Mb 2.55 Mb

Table 1 shows important reductions of the memory
requirements when the proposed structure was used. These
reductions were more important for higher values of K.

5.2.- The Smoothed SFSA in a CSR system.

The Smoothed SFSA, represented as proposed along the paper,
was integrated in a CSR system. Each transition of the
automaton was replaced by a chain of Hidden Markov models
representing the acoustic model of each phonetic unit of the
word. Then, the decoding scheme was performed by using the
time-synchronous Viterbi algorithm. In the lattice the
transition through each word of the vocabulary should be
evaluated each time the system considers a LM state transition
δ(q/w). Thus, the search function through the proposed array
presented in Figure 3 was used to obtain for state q the
following state qd and the associated probability P(w/q) for all
the words in the vocabulary.

A Sylicon Graphics O2 with a R10000 processor was used to
recognice 600 sentences from the BDGEO task, uttered by 12
speakers. Recognition experiments using the full table are
prohibitive, thus the comparison is not possible and only
experiments with the proposed array were carried aut. In order
to reduce the computational cost the beam-search algorithm
was applied with two different widths: a narrower beam factor
(bf) of 0.5 and  a wider one of 0.7. Table 2 shows the word error
rates (WER) for each different values of K. This Table also
shows the average time needed to decode a sentence (seconds)
and the average number of alive nodes at each frame in the
lattice, thus they include acoustic and LM states.

Table 2: Word Error rates for different K-TSS models.

K
average number
of active nodes

Time per
sentence (sec)

WER

bf=0.5 bf=0.7 bf=0.5 bf=0.7 bf=0.5 bf=0.7
2 218.21 526.28 5.6 12.2 15.95 14.29
3 179.01 467.66 4.3 10.1 10.85 9.45
4 177.99 469.60 4.3 10.4 10.12 8.58
5 180.57 478.33 4.6 10.7 10.25 8.72
6 182.32 490.50 4.8 11.3 10.66 9.07

 Table 2 shows that the use of the proposed Smoothed SFSA
representation provides additional time reductions since the
use of the function that manage the array is only needed for
active paths. Table 1 shows that Smoothed SFSAs with high

values of K  need bigger amount of memory but the recognition
rates in Table 2 prove that they can be easily integrated in a
CSR system with not significatively increse of the decoding
time. For the Spanish task used in the work the lower word
error rates were achieved for K=4 and K=5 K-TSS models.

6.- Concluding remarks.

The use of smoothed K-TSS regular grammars allowed to obtain
a deterministic, and hence unambiguous, Stochastic Finite
State Automaton (SFSA) integrating K k-TSS models into a
self-contained model. After applying a back-off smoothing
technique, unseen events have an unique transition to a back-
off state in a more general K-TSS model. So that, the Smoothed
SFSA can be easily represented in an efficient way, where the
probability distribution and transitions were represented in a
simple array of an adequate size. A search function has been
developed to manage the proposed representation allowing the
final integration of the K-TSS model into a CSR system.

An experimental evaluation of the proposed Smoothed SFSA
representation was carried out over a Spanish corpora. These
experiments showed a great reduction of the number of
parameter to be handled and, hence a very important memory
saving. These reductions were more important for higher
values of K. Then the Smoothed SFSA was integrated in a CSR
system showing that the time required in recognition using
Smoothed SFSA with high values of K is not significatively
higher than for low values. The lowest word error rates for the
Spanish task tested, were achieved when K= 4 and K= 5 K-TSS
models were used. As a consequence the ability of this
syntactic approach of the N-grams to be well integrated in a
CSR system, even for high values of K, has been established.
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