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ABSTRACT in a CSR system.

A syntactic approach of the well-known N-grams models, the The use of stochastic automata for language modelingatsas
K-Testable Language in the Strict Sen#eTSS), is used in been recently proposed [5] [6] [7] with the same ainhémdle
this work to be integrated in a Continuous Speech Recognitionaccuratelanguage models in a one-step decoding procedure.
(CSR)system. The use of smwothed K-TSS regular grammars ~ However, thestochastic awmata proposed in [4nd[7] are
allowed to obtain adeterministic Stochastic FiniteState  finite networks wherethe recognizer has to exploseveral

Automaton (SFSA) integrating K k-TSS modelsinto a self- word hypotheses due to their non deterministic natlibe. use
contained model. An efficientrepresentation othe whole of K-TSS regular grammars allowed us to obtailederministic
model in a simple array aind adequatsize is proposedThis Stochastic Finite Stat¢SFSA) that leads to get aimply
structure can beasily handled at decoding time by simple ~ maximum likelihood estimation ofthe probability of each
search function through the array. This formulatisttongly transition.

reducedthe number of parameters to be managedthus the 14 gefinition of the SFSA is provided in Section 2.Saction

computing complexity of the model. An experimental 3 the syntactic back-off smoothing technique is applied to the

evaluation of the proposed SFSA representation was carried OUSESA. In Section 4 the smooth&ESAwas represented in an
over anSpanish recognition taskihese &periments showed efficient way as a simple array, easy to banaged in a CSR

import_ant memory se_lving to allocate K-TSS Languagedels, system. Finally, in Section Smemory requirements and
more important for higher values of K. They also showed that recognition expériments are shown

the decoding timalid not meaningfully increaseavhen K did.
The lower word error rates for theSpanish task testedere 2. The Stochastic Finite State
achieved forkK=4 and 5. As aonsequence thability of this Automaton (SFSA)
syntactic approach of the-ffams to be well integrated in a
CSR system, even for high values of K, has been established. The SFSA is aself-containedmodel thatintegrates K k-TS
automata [6],wherek=1,...K, in a uniqgueautomaton. Thus,
1. INTRODUCTION the model was composed kysubmodel, each one representing

o ] ak-TS LM. The whole automaton is defined byfive-tuple €,
Statistical method$ave beenextensively used to generate

Language ModelgLM) to be integrated inlarge-vocabulary Q o, O, &) where:Z _{W_J'}‘ ] B 1";' !S the vocabu}(lgry, that
and/or Continuous Speedkecognition (CSR)Systems. They is the set of words appearing in tiraining corpus,Q" is the
are based on the estimation of the probability of observing thestate set of the automatofitach state represents a string of

N preceding lexical units(N-gram nodels): P(w,/w,...w, ,). WOrdS Wiy Wi ey Wig, K= 1..K-1, with amaximum length of
However in practice the use of this kind of modelseduce to ~ K-1, wherei stands for a generic index in asfring wy...w;...
low values of N.Nevertheless, it has been shoyj that the appearing in thdraining corpus,such a state is labelled as

probability distribution obtained through an N-granodel is w' "+, see Figure 1), and g 0Q¢ arethe initial and final

strictly equivalent to the distribution obtained bystachastic . . . . ~K K
grammar generating a certgin subclgssr@jular languages statesaér;déK 'S Ehetransmon fur_wctlonéK ' Q x () - Q@
called K-Testable Language in the Strict Seméd8) K stands  [0...1]. 9°(q, w;) = (dq, P(Wi/q)) defines adestination statey [
for the same meaning as N in N-grams). Thiobability QK and aprobability P(w/q) O[0...1] to be assigned to each
distribution [2] [3] obtained from atraining set must be _ K -
modified to also consider those events not seen irtréiaing Ele_mlen]i('], I\;V I?sule?b e>l<l eil. E;ﬁ?;r?; Ssxloorg v\;egrrlzs(;e onr:i el?:?sratr\]/qv’o
corpus. So_that, a syntactic back-m‘rho_othlng perforr_mng stz;tes” If;lbelled Up 1o Withk-1 Wordsl As anexamole
the integration of KK-TS models in aunique self-contained " p to . : pie,
transitions corresponding to strings of words of lendth

smoothed model was proposed in [4]. connecting states associated to string lengtpsal toK-1 are
The aim of this work was to show tlability of this syntactic defined as:

approach to be well integrated in @SR system. For this K. ia i i
purpose an efficient representation tbé model in asimple 0" (W—(k-1), Wi) = (Wi~(kayen, P(W; / Wik 1))
array is proposed ithis paper. Thisstructure can be sdy
handled at decoding time by a simple search functiotnugh
the array allowing models with high values of Kibéegrated

1)

The whole and detailled definition of the Automaton is
provided in [3]. Figure 1 repsents the Kramsw, W .1
1 Wegy and Wy Wiqy-W o labelling two states of the
automaton.Whenw is observed an outgoingansition from
* Work partially supported by the Spani€hCYT undergrant the first to the second state is set and labelled;by
TIC-95-0884-C0O4-03




Figure 1: Two states of the SFSA representing two K-grams. Transitions

are labelled by words appearing in the training sample afteKipeam
labbelling the source state.

The model defined above is a deterministicand hence
unambiguous stochastic finite state automatofB8]. The
unambiguity of the automaton allows to obtain sanply
maximum likelihood estimation ofthe probability of each

transition 3 (W ), W;) as:
i-1
N(W, /W )

z N(Wj /Wii:(lK—l))
DWJDZ

P(w, /WI- (K—l)) =

2

where N(w; /w;_ (K _y) is the number of times thevord w,
appears at thend of the K-gram w,__1y.. w4, that is the
count associated to thteansition labelled byw; coming from
state labelled asv.”, (K -1y This probability distribution must be

modified to also consider thevents not seen in theaining
corpus

3. The Smoothed SFSA
In previous works [4] asyntactic back-off smoothing
procedure was developed. Under this formalismpghebability
P(wi/q) to be associated totaansition 6K(q, w,) = Qg P(W/Q))
is estimated according to:

0 N(w/q) 0

0 N@+s " @
P(w/q) =
WIDZE [ ety

EN(q)+|zq| l—DW%zP(W /b,)

where:Z is the vocabulary associated to stat@nd consists of

the set of words appearing after theing labelling stateq in
the training corpus, i.e. words labellinghe set of seen
outgoing transitionsfrom stateg; N(w/g) is the number of
times thatword w appears after thetring labelling stateq;

N(q) = ZN(w/q), 4l is the size ofz, and P(w/b,) is the
HWFDZq

estimatedprobability associated to the same event in the (
1)-TS submodel; thus, if statgis labelled asw,_, ! then stateb,

is labelled aS\Ni_k+1.

The smoothing function (Equation (3))estimates QK| x |2

training corpus - the vocabulary of the staje- areexplicitly

estimated calculatingN(w/q) andN(q). Theremaining ¥| - B
transition probabilities corresponding to thoseents not
represented in th&raining corpus,are estimated according to
more generaprobability distributions ink-TSS modelswith
k<K. Howeverthesetransitions do noneed to beexplicitly
estimated nor represented at eathte. The structure of the
previous automaton along with the back-oéfmoothing
technique leads to group theimto auniquetransition to the
back-off stateb,, which can beound in a moregeneral sub-
model. Taking into account that tlsochastic condition must
be satisfied, theprobability to beassigned to thdransition
from each state to its back-offtate, Pif,/q), can be esily
estimated as:

|ZQ| 1

P )= N(@) +|Sq 1= > P(W/b,)
owTy,

4)

This transition connects each statavith its back-off stateb,
which represents the same event in tkd)(TS model.Then,
the probability to be associated to each eventraptesented

in the training corpus P(w/q) Ow; O(Z '-%) is estimated
according to:

P(w, /) = P(b, / q)P(w, /b,) Ow; O(3 -5, (5)

This formulation reducesthe number of parameters to be
handled from Q| x [2] to R| x (+1). Finally, this
smoothing approach is incorporated to the previdefnition
of the SFSA to obtain a Smoothed SFSAe SmoothedSFSA

is defined by a five-tuplex QK, do» G, 6K) where onlyéK needs
to be modified. Each state of the automagdn QK shouldadd a
new transition to its back-off statg;

5"(a,U) = (b,, P(b, / 9)) (6)

whereU represents any unseen even associated tocstatbéch
is labelled by aword w; O(2-% o). The back-off stateb,

associated to each statg can be found inthe (-1)-TS
submodel.

Figure 2 shows such a structure for a stplebelled asw, 7, , .

The transitions labelled by th& | words observed dtaining
time after the K-grantabelling g connect it to other states in
the sameK-TS submodel. Transition labelled by connects
state q to its back-off state, w7 ,.,in the K-1)-TSS

submodel.

4. An efficient representation of the
SFSA
The main advantage of the previous formulation is that it leads

to a very efficientrepresentation othe model parameters
learned at training time.

parameters that need large amount of space to be allocated, so

that, it is prohibitive even for small vocabularytasks.

4.1.- An array allocating the Smoothed SFSA.

Nevertheless, the Smoothed SFSA can be represented in such a

way that only transitions seen attraining time need to be
explicitly represented.

A simple array wasused toallocate all the parameters of the
model. A state of the automaton is represented>fiy] array

In Equation (3) the probabilities to be associated to the set offOWS, €ach of oneepresenting an outgoing transitioiach

words appearingafter the &ing labelling stateq in the

position of the array represents a pgin whereq [ Q and



K-TS submode

(K-1)-TS submode

Figure 2: Transitions labelled by seen events connect each state to statgs,ction

in the sameK-TSS submodel. Transitiofabelled by unseen events
connnect it to its back-off state in the (K-1)-TSS submodel.

w2, 0{U}. It consists of four elements:

- a short integer, which representdransition labelled by a
word w [0 2, or by the symbolU that stands for anyinseen
event.

- a double, which represen®w/q) Ow; O %, or P(by/q) for
unseen events.

- a short integer, which represents the valuegf |

- a short integer, which represents the explicit link to fingt
child of g or to its back-off state,

Figure 3 shows the allocation of tip@rtion of the automaton
showed in Figure 2. Inthis table the destination states
corresponding to seen eventan be found inpositions
corresponding to states of the saK@SS submodel,down in
the array(103, 105, etc.), hereas the back-offlestination

state is found in a position corresponding to a state in the (K

1)-TSS submodel, up in the array (76).

4.2.- The transition function & as a simple
search function through the array.

To complete therepresentation ofhe SmoothedSFSA the
transition functiond of the Automatondefined in Section 3
should be proposedandrepresented, for each staqEQK and
for eachwX . This transition functiondefines adestination
state gy and aprobability P(w/g) associated to each paiy,w)
Oq0Q" andOwiX *:

(g, w) = (g4, P(w/q)) Og0Q“ DOwW I3 g, UQ" (7

When seen events appear, the destination gfatan be found
directly as the destination index of the argsition (v,q). In

the sameway the value of P(w/g), computed according to
Equation (3) for VL , can be directly found as the probability

pos #q label(q) ‘Zq‘ label(w) P(w/q) destination
BT BT T W Wono W 6 W, F Pw/q) 103~ ~
85 w, P(w,/q) 105

89 w, P(w,/q) 113

90 u P(Ulq) 76

Figure 3: The array allocation of the portion of ti&noothedSFSA in

Figure 2. Only the outlined elements need to be handled. However, some

additional columns have also be included to clarify the meanirgpoh
component.

value at the array positionv(q). However when unseen events
appear bothgy andP(w/g) valuesare notdirectly found in the

array and a simple search function through the array is required.

This function, represented in Figure 4, search backwards across

the back-off states, i.etransitions through theU symbol,
until the wordw is found as a seen event for a sigia a lower
level k<K), i.e., wX ;. Stateq will be then the searched
destination stategy. The P(w/q) value should be computed
according to Equation (8) ithis case.Thus, Equation (3) is
recursively calculated whilgy is found by the search function.

5 (@™ wix ): @0 Poj0...1]);
var q_auﬂQK; P_auwJ[0...1];

begin
if wX q then dg—array_desfg,w]; {seen events}
dp —array_prol{g,w]
else g_aux- array_desfq,U]; {unseen events}

P_aux—array_proldq,U]
while WX g guxdo
q_aux-array_deskq_auxU];
P_aux- P_auxx array_prodq_auxU]
end_while
oy —array_desfg_auxw];
op —array_prodg_auxw]
end_if
end_Jd.
Figure 4. A simple search functionthrough the proposedirray to
compute Equation (7).gdstands for the destination staig and ¢ for

the probabilityP(w/g).

5.- Experimental assessment.

"An experimental evaluation of the proposed SmootB&EGA
representationwas carriedout over aSpanish corpora. In

Section 5.1, an evaluation of the memory requierements of the

model is presented. Then the mouels integrated in a CSR
system (Section 5.2) showingord error ratesand decoding
time requiered by several K-TSS models.

For
(BDGEO) [8] consisting ir82,000 wordsand avocabulary of

1,213 words was used. This corpus represents a set of queries to
a Spanish geography database. This is a specific task designed

to test integrated systems (acoustic, syntaetic semantic
modelling) in automatic speech understandiigpe training
corpora consisted in 9150 sentences.

5.1.- Smoothed SFSA allocation

Someexperimental measurements wesgried out toevaluate
the save of memory achieved with the proposédictured to

these experiments a task-oriented Spanish corpus



allocate the Smoothe®FSA. Forcomparison purposes the
direct structure represented by a full array QF||>< [Z]+1
positions wasalso considered. In such a case epdsition
consisted oftwo elementsrepresentingthe pair (destination
state, transition probability associatedjable 1 shows the
memory requirements for several values of e nunber of
states of the SFSAQfl, is also provided.

Table 1 Memory required to allocate tieémoothedSFSAfor BDGEO
application task and different Ks.

K |QK| full array proposed array

2 1,213 17.6 Mb 0.13 Mb

3 7,479 108.8 Mb 0.43 Mb

4 21,551 313.6 Mb 0.95 Mb

5 42,849 623.7 Mb 1.69 Mb

6 69,616 1013.3 Mb 2.55 Mb
Table 1 shows important reductions of thememory

requirements when the proposed structwas used.These
reductions were more important for higher value& of

5.2.- The Smoothed SFSA in a CSR system.

The Smoothed SFSA, represented as proposed alongaiher,
was integrated in aCSR system. Each transition of the
automatonwas repaced by a chain dflidden Markov models
representingthe acoustic model of eagionetic unit of the
word. Then, the decoding schemas perfomed by using the
time-synchronous Viterbialgorithm. In the lattice the
transition througheach word of the vocabulary should be
evaluated each time the system considers a LM statesition
o(g/w). Thus, the search function through the proposed array
presented in Figure 3vas used to obtainfor state q the
following stateqy and the associatgorobability P(w/qg) for all
the words in the vocabulary.

A Sylicon Graphics @Qwith a R10000 processawas used to
recognice 600 sentencéom the BDGEOtask, uttered by 12
speakers. Recognition experimenising the full table are
prohibitive, thus the comparison is ngiossible and only
experiments with the proposed array weseried aut. In order

to reducethe computational cost the beam-seaedgorithm
was applied with two different widths: a narrower beam factor
(bf) of 0.5 and a wider one of 0.7. Table 2 shows the word error
rates (WER) for each different values of K. This Tabédso
shows the average tinreeded to decodesentence(seconds)
andthe average number of alive nodes at eftame in the
lattice, thus they include acoustic and LM states.

Table 2 Word Error rates for different K-TSS models

average numbef Time per WER
K of active nodes| sentence (sgc)

bf=0.5 | bf=0.7 | bf=0.§ bf=0J7 bf=0.5| bf=0.7
2 218.21| 526.28 5.6 12.3 15.95 14.2p
3 179.01 | 467.66 4.3 10.3 10.85 9.45
4 177.99 | 469.60 4.3 10.4 10.13 8.59
5 180.57 | 478.33 4.6 10.7 10.25 8.77
6 182.32 | 490.50 4.8 11.3 10.64 9.07

Table 2 shows that these ofthe proposed Smoothe8FSA
representation provides additionine reductions since the
use ofthe function that manage the array dasly needed for
active paths.Table 1 shows that Smooth&FSAswith high

values of K need bigger amount of memory but the recognition
rates in Table 2 prove that they candmesily integrated in a
CSRsystem with notsignificatively increse of the decoding
time. For the Spanish tasksed inthe work the lower word
error rates were achieved fid=4 andK=5 K-TSS models.

6.- Concluding remarks.

The use of smootheg-TSS regular grammars allowed to obtain

a deterministic, and hence unambiguous, Stochastiinite
State Automaton(SFSA) integrating K k-TSS modelsinto a
self-contained modelAfter applying aback-off smoothing
technique, unseen events haveuaiguetransition to a back-

off state in a more general K-TSS model. So that, the Smoothed
SFSA can besasily represented in an efficient wayhere the
probability distributionandtransitions wergepresented in a
simple array of anadequatesize. A search function haseen
developed to manage the proposed representation allowing the
final integration of the K-TSS model into a CSR system.

An experimental evaluation of the proposed SmootBEGSA
representationrwas carriedout over aSpanish corpora. These
experiments showed a great reduction of the number of
parameter to be handled and, hence a waportant memory
saving. These reductions were moimportant for higher
values of K. Then the Smoothed SFSA was integrated in a CSR
system showing that the timeequired inrecognition using
SmoothedSFSAwith high values of K is nofsignificatively
higher than for low values. The lowesbrd error rates for the
Spanish task tested, were achieved when Kand K= 5K-TSS
models were used. As a consequence #dlity of this
syntactic approach of the-§fams to be well integrated in a
CSR system, even for high values of K, has been established.
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