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ABSTRACT
This paper addresses the problem of hands-free speech recog-

nition in a noisy office environment. An array of six omnidirec-
tional microphones and a corresponding time delay compensation
module are used to provide a beamformed signal as input to a
HMM-based recognizer.

Training of HMMs is performed either using a clean speech
database or using a filtered version of the same database. Filter-
ing consists in a convolution with the acoustic impulse response
between speaker and microphone, to reproduce the reverberation
effect. Background noise is summed to provide the desired SNR.
The paper shows that the new models trained on these data perform
better than the baseline ones.

Furthermore, the paper investigates on MLLR adaptation of
the new models. It is shown that a further performance improve-
ment is obtained, allowing to reach a 98.7% WRR in a connected
digit recognition task, when the talker is at 1.5 m distance from the
array.

1. INTRODUCTION

Hands-free continuous speech recognition represents a challeng-
ing scenario. In the last years, many experimental activities were
devoted to investigate the use of microphone arrays for this pur-
pose.

This work concerns the use of a Hidden Markov Model (HMM)
based speech recognizer trained with a corpus of speech material
obtained from clean speech signals preprocessed in order to repro-
duce realistic reverberation and noise effects.

Starting from the signals acquired by means of a linear micro-
phone array, a time delay compensation module provides a beam-
formed input to the recognizer. The advantage of using a mi-
crophone array with respect to a single microphone has been ad-
dressed in our previous works [1, 2], where hands-free recogni-
tion experiments were carried out in various noisy environments.
By performing experiments both on real environment data and on
simulated data [1], those works addressed various aspects such as:
variabilities due to talker’s position, microphone array configura-
tion, noise and reverberation conditions. Another important result
was that phone HMM adaptation based either on Maximum A Pos-
teriori (MAP) estimation or on Maximum Likelihood Linear Re-
gression (MLLR) represents an effective way to reduce the resid-
ual mismatch (between training conditions and testing conditions)
persisting after the application of microphone array processing.

In [3], a connected digit recognition task was addressed. Re-
sults showed the convenience of using MLLR, especially when
only a small adaptation material set is available, and the robustness
of the resulting hands-free recognition system when the talker po-
sition changes. A limitation of such an approach is due to the fact
that the available set of HMMs is trained on clean speech material.
Starting from a system tuned on a completely different environ-
mental context, we would like to “move” HMMs toward the real
environment context with a few sentences as reference.

The approach followed in this paper consists in trying to ex-
ploit some information on the real environment such as impulse
response of the room and background noise level to generate a fil-
tered version of the clean speech corpus available for system train-
ing. The obtained filtered speech corpus should better match the
acoustic operating conditions and allow training of more robust
HMMs. Furthermore, the set of models so obtained represents a
more suitable initial set for a subsequent model adaptation phase.

This work describes the impulse response measurement proce-
dure as well as the method of filtering speech material, necessary
to re-condition clean speech material for HMM training. Exper-
imental results of connected digit recognition are related to the
same task described in [3], of which this paper represents an ex-
tension.

2. SYSTEM DESCRIPTION

The hands-free recognition system considered in this work consists
of: a linear microphone array module that provides a beamformed
signal; a Feature Extraction (FE) module; a HMM-based recog-
nizer that can operate either with clean or adapted models (a block
diagram of the system can be found in [3]). The same recognition
engine was adopted when using a close-talk microphone as input
to the FE module.

2.1. Linear Microphone Array

The use of a microphone array [4] for hands-free speech recog-
nition relies on the possibility of obtaining a signal of improved
quality, compared to the one recorded by a single far microphone.
This is accomplished by means of a beamforming technique based
on Crosspower Spectrum Phase (CSP) [5] that performs Time De-
lay Compensation (TDC) [1, 2].

In the following, the analysis is limited to the use of a linear
array of six equispaced (at 15 cm) omnidirectional microphones.

2.2. Recognition System

The input to the feature extractor is the signal acquired by the
close-talk microphone in the case of the baseline system, and the
output of the TDC processing when the microphone array is used.
The FE input signal is preemphasized and blocked into frames of
20 ms duration (with 50% frame overlapping). For each frame, 8
Mel scaled Cepstral Coefficients (MCCs) and the log-energy are
extracted. MCCs are normalized by subtracting the MCC means
computed on the whole utterance. The log-energy is also normal-
ized with respect to the maximum value in the utterance. The re-
sulting MCCs and the normalized log-energy, together with their
first and second order time derivatives, are arranged into a single
observation vector of 27 components.

The HMM module is based on a set of 34 phone-like speech
units. Each speech unit is modeled with left-to-right Continuous
Density HMMs with output probability distributions represented



by means of mixtures having 16 Gaussian components with diag-
onal covariance matrices.

3. HMM TRAINING

HMM training was accomplished through the standard Baum-
Welch training procedure. For the baseline system, HMM training
was carried out exploiting a phonetically rich italian corpus, called
APASCI [6], acquired in a quiet room (SNR� 40 dB) by means of
a high quality close-talk microphone. Training set consists of 2166
utterances collected from 100 speakers (50 males and 50 females).

3.1. Training using filtered clean speech

A database of acoustically realistic multichannel signals was arti-
ficially recreated, starting from the corpus of single-channel clean
signals available for training and from some information on the
real operating environment, such as the room impulse response
and the background noise level. The obtained filtered version of
the training corpus was then used for HMM training.

3.1.1. Impulse response measurement

The time-stretched pulse proposed by Aoshima [7] and general-
ized in [8] is a chirp-like signal having a flat overall power spec-
trum, that enables a very accurate measurement of the acoustic
impulse response. As a consequence of its extended time duration,
this excitation can deliver a large amount of energy, while avoiding
problems of dynamic range. The pulse is defined on the discrete
frequency domain as the N-point sequence:

P (k) =

�
exp(j2m�k2=N2) 0 � k � N=2
P �(N � k) N=2 � k � N

(1)

The parameterm is an integer that determines the stretch of
the pulse. The inverseDFT of P (k) is a chirp-like sequence
p(n) (see Figure 1) that can be transduced by a loudspeaker into
an acoustic signal.

A noteworthy characteristic ofp(n) is that its autocorrelation
is an almost perfect Dirac delta function. As a consequence, the se-
quencey(n) acquired by a microphone when the loudspeaker gen-
erates this excitation can be easily deconvolved by simply cross-
correlating it with the original sequencep(n). The result is the
acoustic impulse response from the loudspeaker to the microphone.
Apart from the contribution of the frequency response of the loud-
speaker, this is exactly the impulse response of the acoustic chan-
nel in the acquisition of a talker speaking at the same location of
the loudspeaker.

This method was employed to determine the impulse re-
sponses from each talker position to each of the six microphones
of the array (Figure 2). The overall impulse response of the array-
beamformer was then derived by properly delaying and summing
the individual impulse responses, according to the aiming of the
beamformer toward the talker.

3.1.2. Filtered speech generation

Starting from the clean signals, the reverberation effect of the room
on the various channels was reproduced by convolution with the
measured impulse responses. The effect of background noise was
accounted for by summing the noise recorded inside the room,
with properly scaled amplitude to reproduce the desired Signal to
Noise Ratio (SNR).
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Figure 1: Example of time-stretched pulse p(n), obtained as in-
verse DFT of the sequence P(k) in equation (1). Here N=2048,
m=1024 (the sequence has been circularly shifted to center the
pulse).
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Figure 2: Example of loudspeaker-to-microphone impulse re-
sponse measured in the experimental room.

3.2. HMM Adaptation

In this work, the Maximum Likelihood Linear Regression (MLLR)
approach is adopted for adapting an initial set of Gaussian mixture
HMMs to new operating acoustic conditions [9, 10].

The Gaussian densities of the system are grouped into 8 re-
gression classes. Adaptation of means and variances is performed,
exploiting the adaptation data, in two separate steps of an iterative
scheme [10]. Just an iteration of the mean and variance adaptation
scheme was performed in the experiments reported in the follow-
ing [3].

Furthermore, since a set of fixed regression classes has been
adopted, when a small amount of adaptation material is available
a robust transformation may not be determined for all the classes.
To deal with this specific situation, a global transformation, asso-
ciated to a regression class formed by all the Gaussian densities of
the system, is estimated and used for the classes characterized by
lacking of data. This approach was followed for both mean and
variance adaptation [3].

4. MULTICHANNEL SPEECH CORPUS

Speech material was collected (see [3]) in an office of size (5:5m�
3:6m� 3:5m), characterized by a moderate amount of reverbera-
tion (T60 ' 0:3s) as well as by the presence of coherent noise due
to some secondary sources (e.g. computers, air conditioning, etc).

During a first recording session, 30 connected digit strings
(consisting in a total of 120 digit occurrences) were uttered by
each of eight speakers (4 males and 4 females) in a frontal position
(F150) at 1.5 m distance from the array.

After two days, a new recording session was conducted in the
same office, under similar environmental noise conditions: in this
case, each of the eight speakers uttered 50 connected digit strings



(400 digit occurrences), both atF150 and at the lateral position
L250 (2.5 m distance, 45 degrees left of the array).

Multichannel recording of each utterance was accomplished
by using both a Close-Talk (CT ) directional microphone and a
linear array of six equispaced (at 15 cm) omnidirectional micro-
phones. Distance between the talker’s mouth and theCT micro-
phone was approximately15cm. Acquisitions were carried out
synchronously for all the input channels at 16kHz sampling fre-
quency, with 16 bit accuracy.

SNR, measured as ratio between average speech energy and
noise energy at the microphones of the array, was in the range
between 12 dB and 18 dB in the case of frontal acquisition (F150)
and in the range between 9 dB and 15 dB in the case of lateral
acquisition (L250). It is worth noting that SNR measured onCT
microphone signals was in the range between 24 and 33 dB.

5. EXPERIMENTS AND RESULTS

For each speaker, a development set and a test set were defined,
that consisted in the 30 connected digit string set and in the 50
connected digit string set, respectively. Each development set was
used to adapt speaker-independent phone HMMs to the acquisition
channel, to the environmental condition as well as to the speaker.

Performance given in the following is represented as Word
Recognition Rate (WRR %), averaged on the test sets of the eight
speakers. As a result, each test experiment concerns recognition
of 3200 (=400x8) digits.

F150 L250
Arr Mic1 Arr Mic1

Baseline 73:0 50:3 56:6 37:8
Baseline MLLR 97:8 91:5 95:3 87:8

Table 1:Recognition performance for the baseline system with and
without HMM adaptation.

Table 1 shows performance (at the two given talker positions
F150 andL250) of the baseline system (Baseline) trained us-
ing clean speech material. Performance after MLLR adaptation
(Baseline MLLR) is also reported. In particular, considering
the talker positionF150, system performance without any HMM
adaptation was 73.0% WRR and 50.3% WRR, using the micro-
phone array module (Arr) or a single microphone of the array
(Mic1) as input to the recognizer, respectively. As a reference,
using CT input, baseline system performance was 99.1% WRR
and 99.7%, before and after MLLR adaptation, respectively.

It is worth noting that adaptation experiments for positionL250
were conducted using material collected at positionF150.

5.1. HMM training based on filtered speech

The first set of new experiments focuses on the use of HMM mod-
els derived from a training on speech material filtered as described
in Section 3.

Filtered material can be derived either only adding background
noise or also taking into account room acoustics (i.e. by using a
measured impulse response). The behavior of system performance
depends on the level of noise that is added to clean speech. For this
reason a training set was derived adding background noise to the
training clean material in order to have signals with a desired SNR.
The obtained signals were then used to train a set of HMMs. This
operation was repeated for six desired levels of noise in the range
0-25 dB. Each set of models was then used in the recognition tasks:
performance is reported in Figure 3. As a result, Figure 3 shows
that a maximum of WRR is obtained when additive background
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Figure 3:Recognition performance obtained with different model
sets corresponding to training sets characterized by different
SNRs.

noise of 10-15 dB is used. This noise level, as expected, corre-
sponds to that measured in the speech material used for test (see
Section 4).

Adding different background noise levels (in this case SNR
ranged between 2 and 20 dB) to the clean speech allowed to train
a set of HMMs providing performance (84.7% WRR in the case
of single remote microphone and 90.3% WRR in the case of mi-
crophone array for positionF150) close to the best ones given in
the Figure 3. This training condition, denoted withNs2�20dB,
represents an effective and flexible way to derive a robust set of
HMMs.

In addition to baseline performance, Table 2 reports on re-
sults obtained by the system trained with material derived from
clean speech by adding either background noise at 15 dB SNR
(Ns15dB) or background noise of different levels (Ns2�20dB).

F150 L250
Arr Mic1 Arr Mic1

Baseline 73:0 50:3 56:6 37:8
Ns15dB 90:1 82:9 91:8 86:3
Ns2�20dB 90:3 84:7 90:5 84:7
Ir Ns15dB 95:6 88:6 94:0 88:6
Ir Ns2�20dB 95:8 90:6 93:5 89:8
IrMix Ns2�20dB 94:9 90:1 94:6 89:0

Table 2:Recognition performance obtained filtering clean speech
with different levels of background noise and, in the last three
cases, using different room impulse responses.

When the room impulse response is also used to filter clean
speech, a definitely better performance is obtained as shown in
Table 2. This advantage is clear both in the case of joint use of
impulse response and additive noise at 15 dB SNR (training con-
dition denoted byIr Ns15dB) and in the case of joint use of
impulse response and additive noise at different SNRs (training
condition denoted byIr Ns2�20dB). For instance, in the latter
case 95.8% WRR is obtained atF150 using the microphone array
as input. Note that, for all these experiments, impulse response
was measured at talker positionF150.

Another experiment was conducted, where training clean ma-
terial was filtered adding different background noise levels and us-
ing impulse responses measured in four positions (positionF150
andL250 plus two others). Each clean speech signal was filtered
choosing randomly a given background noise level between 2 and



20 dB and an impulse response measured in one of the four posi-
tions in the room (training condition denoted byIrMix Ns2�
20dB). Recognition performance reported in Table 2 shows that
knowing exactly the talker position for an accurate room impulse
response helps but it does not seem to be crucial. However, this
point requires further investigation.

5.2. HMM adaptation starting from different models

From the previous section, one can observe that any set of mod-
els trained with filtered speech material provided results close to
baseline with MLLR adaptation.

Another interesting investigation concerns adaptation of mod-
els trained with filtered speech. As reported in Table 3, one can
observe a further significant improvement with respect to adapta-
tion of theBaseline system. Starting from HMMs trained with
the Ir Ns2�20dB filtered material 98.7% WRR was obtained
at F150 using the array as input of the recognizer. It is also in-
teresting to see that even in the case of remote microphone input
Mic1, the use of filtered speech for training, together with that
of MLLR adaptation, represent a convenient approach to improve
performance of any hands-free system.

F150 L250
Arr Mic1 Arr Mic1

Baseline MLLR 97:8 91:5 95:3 87:8
Ir Ns15dB MLLR 98:3 93:8 96:3 92:2
Ir Ns2�20dB MLLR 98:7 95:7 97:9 94:9

Table 3:Recognition performance with model adaptation starting
from HMMs trained with clean or filtered material.

Experiments discussed above regard the use of 30 connected
digit sentences for adaptation. As a final investigation, it was an-
alyzed how this performance changes when a smaller amount of
adaptation material is available. Figure 4 reports on some recogni-
tion results for positionF150.

The figure shows that adapting models, trained withIr Ns2�
20dB filtered material (curvesIr Ns2 � 20dB Mic1 and
Ir Ns2�20dB Arr), always leads to better results than adapting
baseline models (curvesBaseline Mic1 andBaseline Arr).
Furthermore, results show that model adaptation is effective even
with just 8 adaptation utterances.

6. CONCLUSIONS AND FUTURE WORK

In hands-free speech recognition the application of microphone ar-
ray processing compensates only for part of the mismatch between
training and testing acoustic conditions.

Given a HMM-based speech recognizer, adaptation of the
model set to the new acoustic conditions can be accomplished by
exploiting a small amount of adaptation data collected in the oper-
ating environment. In this paper a different approach has been pre-
sented, and tested in the context of hands-free continuous speech
recognition with a small vocabulary. A filtered version of a clean
speech corpus is derived and used for HMM training. The resulting
models are therefore conditioned to the operating acoustic condi-
tions that have been assumed. Recognition experiments showed
that these new models ensure performance clearly better than that
obtained with baseline models and close to that obtained adapt-
ing baseline models. Furthermore, training models with filtered
speech results in a good initial set of models for a subsequent adap-
tation phase.

In the future the use of models trained with filtered speech will
be investigated in combination with on-line adaptation.
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Figure 4:Adaptation results with different amount of speech data
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