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ABSTRACT
This paper describes a new cohort normalization method for
HMM based speaker verification. In the proposed method,
cohort models are synthesized based on the similarity of local
acoustic features between speakers. The similarity can be
determined using acoustic information lying in model
components such as phonemes, states, and the Gaussian
distributions of HMMs.  With the method, the synthesized
models can provide an effective normalizing score for various
observed measurements because the difference between the
individual reference model and the synthesized cohort models is
statistically reduced through fine evaluation of acoustic
similarity in model structure level. In the experiments using
telephone speech of 100 speakers, it was found that high
verification performance can be achieved by the proposed
method: the Equal Error Rate (EER) was drastically reduced
from 1.20 % (obtained by the conventional speaker-selection
based cohort normalization) to 0.30 % (obtained by the
proposed method on distribution-based selection) in closed test.
Furthermore, EER was also reduced from 1.40 % to 0.70% in
open test (reference speaker: 25, impostor: 75), when the other
speakers than the reference speaker were used as impostors.

1. INTRODUCTION

In most speaker verification methods, it has been known that
score normalization using the likelihood ratio of the reference
speaker model and speaker background model or cohort model is
very effective for improving the performance. Higgins et al. used
a discriminate counter to verify the speakers, in which they used
a maximum score of all speaker models (the reference model is
not included) as normalizing score[1]. Rosenberg et al. used a set
of models consisting of several cohort speakers selected for
individual reference speakers. In the study, cohort set was
constructed by random selection of speakers, selection based on
similarity between speakers, and so on[2].  Liu et al. proposed
the use of cohort models given by pooled training, in which
speech data of the speakers whose models are similar to the
reference model are used[3]. Furthermore, Matsui et al. reported
the effectiveness of the normalization based on a posteriori
probability, in which the reference speaker is included in training
of cohort models[4]. In terms of log likelihood, the normalized
verification score is represented as the difference of log
likelihoods, as follows:
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where o represents the observed sequence of feature vectors, and
( ))(| Isp =o  is the likelihood of the observed sequence with

respect to the reference speaker I, and ( ))(| Isp ≠o  is the

likelihood of the sequence for other speakers than I. According to
the equation (1), the key point is how to construct cohort models

)( Is≠  which provide an effective normalizing score robustly
against the likelihood variation for various observation sequences.
In the above-mentioned normalization methods, various
techniques were devised to construct cohort models. But there is
serious problem in these methods. In the methods, cohort models
are determined by choosing the closest speaker model to the
reference model among the other speaker models or combining
some speaker models closer to the reference model. Constituent
unit of cohort set is obliged to be "speaker model", so the
likelihood variation of cohort models is difficult to control finely.
Therefore, it is considered that the likelihood score ratio is not
stable.

In this paper, to solve the problem, a new method of constructing
cohort set and the way of synthesizing cohort models are
proposed. The feature of the method is that cohort models are
virtually synthesized focused on the acoustic similarity between
models in fine-structure level. In the following section, basic
concept is described. Section 3 describes a formulation of the
proposed method.  Some experiments and their results also
described in section 4 and 5.

2.  BASIC CONCEPT
Figure 1 shows conceptual illustration of cohort model
construction method we proposed. In this figure, in order to
understand the concept easily, speaker is simply represented by a
model consisting of three Gaussian mixture distributions. The
illustration shows the situation that four speaker models (A, B, C,
and D) are closer to the reference speaker model I. In the
conventional cohort model construction by speaker-based
selection, some or all the closer models are chosen as members of
cohort set. On the other hand, in distribution-based selection,
which is one of the proposed methods, speaker model V is
virtually constructed as cohort model using some of the closer
models’ distributions. In the example, distribution a3 of speaker
A is selected for distribution I1 of reference speaker I.
Distribution c3 of speaker C and distribution d1 of speaker D are
also selected for distributions I2 and I3 of speaker I, respectively.
These selections are determined by distance between
distributions, which mean the similarity of local acoustic features.
As shown in Fig. 1, virtually synthesized cohort model V is
statistically closer to the reference models than cohort set or
cohort model obtained by the conventional speaker-based



selection. This means that the verification score represented by
the likelihood ratio shown in equation (1) becomes less variable
and more stable by the use of our method than that of
conventional one. Therefore, it is expected that our method can
provide effective cohort models for normalizing score.

Figure 1. Concept of cohort model construction

3. COHORT NORMALIZATION
TECHNEQUES USING LOCAL ACOUSTIC

INFORMATION

3.1 Selection Method

(a) Speaker-based Selection

Typical cohort normalization methods are based on speaker-
based selection in organizing cohort set. Log likelihood shown in
the second term of equation (1) is represented as follows:
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where K represents cohort size, and ck(I) is the k-th cohort
speaker for the reference speaker I. A set of cohort speakers ck(I)
(k=1,2,…,K) are selected from the reference speakers except the
speaker I. The k-th selected speaker is the k-th closest speaker to
the reference speaker I.

(b) Phoneme-based Selection

When organizing cohort models by phoneme-based selection, the
second term of equation (1) is represented as follows:
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where c’k(I) represents the k-th cohort speaker which model is
virtually synthesized based on the following way of phoneme
selection.  The synthesized model consists of phonemes extracted
from different speaker models. Each phoneme model is closer to
the corresponding phoneme model of the reference speaker I. In
general expression, the selection can be represented in the
following.  Given a set of models of speaker I as
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where P is the number of phoneme models and )( I
pλ  is a model

represented by HMM for phoneme p of speaker I, a set of
phoneme models of  virtually synthesized k-th cohort speaker is
described as
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p

kλ  is a model obtained from phoneme p of  the k-th

cohort speaker, which corresponds to the model for phoneme p
of the reference speaker I.

(c) State-based Selection

In the case of cohort models by state-based selection, the
likelihood is represented as equation (2). Topology of phoneme
HMMs is assumed to be left-to-right, in which each HMM
consists of S states with a mixture of M Gaussian distributions
per state in the following:
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where p represents phoneme, ap,s,t is the probability of state
transition from state s to t,  wp,s,m is the weighting parameter of
the m-th Gaussian distribution of state s, and Np,s,m denotes the
m-th Gaussian distribution of state s. Therefore, a set of models
of virtually synthesized k-th cohort speaker is represented as
follows:
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where ck(I,p,s) is the k-th cohort speaker selected when state s of
phoneme model p is the k-th closest state to the corresponding
state of the same phoneme model of speaker I.

(d) Distribution-based Selection

For distribution-based selection, a set of models for virtually
synthesized k-th cohort speaker is defined as follows:
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where ck(I,p,s,m) is the k-th cohort speaker. In the k-th cohort
speaker model, the n-th Gaussian distribution at state s for
phoneme model p is the k-th closest distribution to the m-th
Gaussian distribution at the same state of phoneme model p for
speaker I. The probabilities for self-loop state transition and
weighting parameter are renormalized using equations (9) and
(10) according to the constraints given by mathematical HMM
formulation, because the constituent Gaussian distribution has
selected from different speaker models.

3.2 Similarity Measure in Each Selection

When cohort models are constructed, constituent components of
the models are chosen from all the reference models based on the
similarity between speaker models, phoneme models, states, and
distributions. In the proposed methods, the similarity between
components is defined on the basis of the Battacharyya distance
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[5] of the Gaussian distributions of HMMs.  Let us consider the
similarity between speaker model X and speaker model Y, in
which X and Y consists of the same phoneme sequences and
those are for different speakers.  In the Gaussian distribution-
based selection, distance between distributions at the same state
number in models X and Y is evaluating as the inter-distribution
similarity. When using state-based selection, representative
distributions are estimated using constituent mixture distributions
of the state, and then the distance between them is evaluated as
the inter-state similarity at the same state number in models X
and Y.  In the phoneme-based selection, the averaged value of
whole inter-state distances is used as inter-phoneme similarity.
Inter-speaker similarity is also used as the averaged distance of
entire inter-phoneme distances obtained from constituent
phoneme models.

4. EXPERIMENTS

4.1 Experimental Setup

Four kinds of data sets (sets A1, A2, A3, and B) were used for
the experiment. Vocabulary items of those data sets were four-
connected digits.  The number of speakers was 25 (12 males and
13 females) for sets A1, A2, and A3, and was 75 (38 males and
37 females) for set B.  In the data sets, 70 utterances of four-
connected digits per speaker were collected. The data sets A1, A2,
and A3 consist of speech data uttered by the same speakers but
each of them were collected every three months. The data were
telephone speech quality. The data sets A1 and B were recorded
at the same session.  All the speech data were recorded on the
digital audio tape with headset microphone in the soundproof
room. They were recorded again through practical telephone
networks via mouth simulator, electret telephone handset, and
DSP-based speech processing card provided by Dialogic Co..
Collected telephone speech were digitized at an 8 kHz sampling
rate using an 8-bit µ -law codec, and then converted to linear

PCM samples. The digitized speech signal was pre-emphasized
using the filter H(z)=1-0.95z-1, and converted to 10-th order auto-
correlation coefficients in the conditions of Hamming window
length: 25 msec and window shift length: 10 msec. We used 12-
th order LPC cepstral coefficients, 12-th order delta cepstral
coefficients, and delta log power as feature vector. Speaker
models were trained by Maximum Likelihood (ML) estimation as
context-independent phoneme HMMs, in which each HMM was
3-state let-to-right model with 3 mixture components per state.

4.2 Verification Experiments

Two kinds of verification experiments were carried out: closed
test and open test. In the closed test, the experiment was
conducted using data sets A1, A2, A3, respectively. Thirty
speech data of 70 utterances in data set A1 were used for training
models of individual reference speakers. Forty utterances of each
data sets A1, A2, and A3 were used as speech data for
verification trials. For each reference speaker, verification test
was done in the assumption that other 24 speakers were
recognized as imposters. For data set A2 and A3, reference
models obtained using data set A1 were also used for verification
test. Cohort models for individual reference speakers were
constructed by the proposed methods using the other 24 speaker

models. On the other hand, in open test, individual reference
models and cohort models were obtained by the same manner as
the closed test.  Speakers of the data set B were used as imposters
against the data set A1, A2, and A3. Forty utterances per speaker
of data set B were also used for verification trials.

5. RESULTS

5.1 Closed Test Results

The results of closed test are shown in Figs. 2-(a) to 2-(c). The
verification performance of the proposed methods is evaluated in
EER (Equal Error Rate) in the condition of posteriori-defined
threshold value common to all the speakers.  For any data set A1,
A2, and A3, EER decreases as cohort size increases for every
method. Performance tends to saturate when cohort size is about
five to six.  In the viewpoint of difference between synthesized
methods, distribution-based selection was most superior to the
others. Performance tends to decrease in the order of state-based
selection, phoneme-based selection, and speaker-based selection.
This shows the tendency that performance increases when the
grain of constituent unit become so fine in cohort model
construction. Compared typical method of speaker-based
selection with distribution-based selection, error reduction rate of
EER is 70.1 % (EER reduces from 0.87 % to 0.26 %.) for the
data set A1, 37.5 % (2.88 % to 1.80 %) for A2, and 24.4 %
(4.5 % to 3.4 %) for A3, when cohort size is five.

5.2 Open Test Results

In this test, speakers from data set B were used as imposters in
verification test for data set A1, A2, and A3, respectively.
Models trained using data set A1 were used as reference models.
This test seems to be practical situation in the real-world use of
speaker verification system because unexpected imposters appear.
Experimental results are shown in Figs. 3-(a) to 3-(c). The
similar tendency for verification performance can be found in
terms of performance vs. cohort size. Cohort size is about four to
five when performance saturates.  The high performance can be
also obtained by the distribution-based selection as well as the
closed test. Performance comparison between selection methods
gives the same tendency as the closed test in the tests for data set
A1, A2, and A3: distribution-based, state-based, phoneme-based,
and speaker-based in the order of performance.  In the
comparison between speaker-based selection and distribution-
based selection, high EER error reduction rate of 46.2 % (1.30 %
to 0.7 %) can be achieved for data set A1. The rates are 24.8 %
(3.99 % to 3.0 %) for A2 and 24.0 % (6.0 % to 4.56 %) for A3,
respectively. For these tests, cohort size is five.

6. DISCUSSION

From the results of closed test and open test, our proposed
method was experimentally proven to be effective for
constructing cohort models.  The Gaussian distribution-based
selection was the most effective in any other selection methods.
The reason is that statistical matching between cohort models and
the reference models can be carried out efficiently by finely
evaluating local acoustic similarity based on the difference
between the Gaussian distributions.



Figure 2. Closed test results

We measured mean and variance for posteriori-defined threshold
values of individual reference speakers. In this case, EER values
are different each other reference speakers. The results are shown
in Table 1. In this table, we must remark an important point that
distribution-based selection can give the smallest variance of
threshold values. This means that the proposed distribution-based
selection can provide an effective normalizing score robustly for
various measurements.  Considering this result of small variance
along equation (1), we can recognize that cohort models
constructed by the proposed method are statistically closer to the
reference models.

7. SUMMARY

We proposed a new cohort normalization for speaker verification.
Our proposed method uses cohort models synthesized based on
local acoustic features of various kind of components such as
phonemes, states, and the Gaussian distributions of HMMs.
Cohort models obtained by the method can provide an effective
normalizing score when verification is carried out using various
observation sequences. Because the synthesized models are
statistically close to the reference models. Some experimental
results showed that distribution-based selection is most effective,
because grain of constituent unit for synthesizing cohort models
is so fine to control the normalizing score variation.  From some
experiments, in open test of 100 speakers verification (reference
speaker: 25, impostor: 75), high EER reduction rate can be
achieved, compared with the conventional speaker-based
selection normalization: 46.2 % for test set in which training data

Figure 3. Open test results
Table 1. Statistics of threshold values for individual

                         speaker’s EERs

and trial data were recorded in the same session, 24.8 % for test
data in which trial data were collected three months later, and
24.0 % for test data (recorded six months later), where cohort
models are synthesized using the Gaussian distribution-based
selection and cohort size is five.
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