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ABSTRACT

This paper introduces a new lattice quantization scheme, the multi-
ple-scale lattice vector quantization (MSLVQ), based on the trun-
cation of theD+

10 lattice. The codebook is composed of several
copies of the truncated lattice scaled with different scaling fac-
tors. A fast nearest neighbor search is introduced. We compare
the performance of predictive MSLVQ for quantization of LSF co-
efficients with the quantization technique used in the codec G.729
and show the better performance of our method in terms of spectral
distortion. The MSLVQ scheme achieves the transparent quality at
21 bits/frame.

1. INTRODUCTION

Linear predictive coding (LPC) method is one of the most popular
approaches used for describing the short-term spectrum of speech
signal. In many speech coding systems, LPC coefficients are trans-
formed in the line spectrum frequencies (LSF) representation in
view of quantization.

During the last years, many vector quantization schemes have
been proposed for the transmission of the LSF parameters. One
way to rank various quantization methods is to compare the bit
rates at which is achieved the transparent quality [6], which usually
are in the range 20-30 bits/frame. For practical applications the
transparent quality is too costly and very recent standards have set-
tled the tradeoff cost-performance at lower than transparent qual-
ity requirements, one typical example being the standard G.729,
where a non-transparent, but still good quality, is achieved with 18
bits/frame by employing a low complexity multistage combined
with split VQ, in a predictive scheme.

It was observed that exploiting the interframe correlation the
transparent quality is obtained at lower bit-rates, as proven by the
better results of predictive VQ when compared to memoryless VQ
[10]. Principal component analysis can provide another effective
method of taking advantage of LSF coefficients redundancy, as
shown in [13], where the Karhunen Loeve transform is applied
to LSF coefficients and only 7 out of 10 of the transformed co-
efficients are transmitted, resulting in transparent quality at a rate
of 22 bits/frame. In [12] a dynamic codebook ordering followed
by entropy coding is shown also to use very efficiently the redun-
dancy of LSF parameters, reducing from 24 to 20 the number of
bits/frame. Another method that uses the memory in the process of
transmission and reception of the quantization index is presented
in [11]. In [16] successive LSF coefficients are partitioned into
variable length segments of strings that are classified in a finite
number of classes.

Some critical factors in wireless applications are the amount
of memory required to store the codebooks and the complexity of
computation used for comparing the input vector to each of the

codevectors. One efficient method to address these issues is the
use of lattice VQ. Results on this line have been reported in [14]
where by means of a split VQ, three low-dimensional (2,2,3) lat-
tice codebooks and a two dimensional stochastic vector quantizer
are employed. With this scheme the transparency is obtained at
28 bits/frame. A two stage tree-structured VQ with a pyramidal
truncated lattice in the second stage is proposed by Pan [8].

We present in this work the use of a 10-dimensional lattice
VQ that has better performance than G.729 at 18 bits/frame and is
“transparent” at 21 bits/frame. We present a very fast method for
searching the codebook for the nearest neighbor. The scheme has
very low memory requirements, since there is no need to store the
codebook.

First we review the spectral quantization problem, the lattice
vector quantization method, and pay special attention to the lat-
tice D+

10 which will be used in this paper. The new predictive
multiple-scale lattice VQ will be further introduced, followed by
experimental results and conclusions.

2. LPC QUANTIZATION

The LPC parameters are extracted from the input signal and trans-
mitted in order to reconstruct at the decoder the short-term spectral
envelope of the decoded signal. The LPC parameters are the coef-
ficients of thep-th order prediction polynomialA(z), obtained by
applying the Levinson algorithm to a frame of speech signal. At
the decoder, the decoded excitation is filtered by the all-pole filter
H(z) = 1=A(z). The order ofA(z) is commonly takenp = 10.
The LPC parameters are transformed into an equivalent set, the
line spectrum pairs (LSF) and their quantized values are transmit-
ted to the receiver. The process of quantizing the filter parameters
to a finite number of bits/frame is referred to as LPC quantization.

The spectral distortion is often used as an objective measure
of the encoding performance:
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3. LATTICE VQ

A lattice can be defined as all the linear combinations with integer
coefficients of the basis vectors,b1;b2; : : : ;bd [1]. Other defini-
tions also exist, but in the context of vector quantization we prefer
this one. Lattice points are equally distributed in space and every



point in the lattice has the same spatial distribution of its neigh-
bors. A lattice can be described by means of the generator matrix
(formed by the basis vectors) [1] or by properties associated with
the lattice point coordinates [2]. All the lattice points have integer
components but they can be scaled by a positive real number such
that they suit the application demands.

A truncated and properly scaled lattice can be used as a code-
book for a vector quantizer. The advantages of this VQ method are
the fast nearest neighbor search algorithm and the reduced mem-
ory demands. However, reaching with a lattice VQ a good coding
efficiency depends on how close to the uniform distribution is the
distribution of data, and, as observed in [1], the higher the number
of dimensions, the closer the distribution is to a uniform one.

A truncated lattice can be defined as the set of lattice points
having the norm less than a given valueK:

T = fx 2 �jN(x) � Kg (2)

where� is the lattice andN(x) is a norm ofx. If N(x) is the Eu-
clidean norm the truncation will be spherical [1] and in the case of
thel1 norm the truncation will be pyramidal [8]. The lattice points
will be grouped on spherical or pyramidal shells. The number of
points on each shell can be calculated by means of the� series for
spherical shells [2] or for the pyramidal shells by means of the~�
series that will be further introduced.

3.1. The latticeD+
10

Recently it has been found out thatD+
10 is the lattice with the low-

est second moment in 10 dimensions [1], which makes it the best
candidate for a lattice quantizer in 10 dimensions. This lattice is
defined as:

D+
10 = D10 [ (D10 + [1=2 : : : 1=2]| {z }

10

) (3)

where the latticeD10 is:

D10 = f(xi) 2 Z10j
X

xi = eveng (4)

3.2. Truncation of the lattice

Let N(x) be the norm of the vectorx. As stated before, the lat-
tice can be spherically or pyramidally truncated. In both cases the
number of lattice points in the truncation must be determined. For
the first case this problem is solved in [2] and for the second case
(pyramidal truncation i.e.N(x) =

Pn
i=1 jxij) we shall present a

solution in what follows.
We introduce the following~� series:

~�2(z) =

1X
m=�1

qjm+1=2j;

~�3(z) =
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1X
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whereq = e�iz.

With these new defined series we follow a similar methodol-
ogy to the one presented at page 45 in [2] (which uses� series) for
computing the number of points on each shell.

The� series for the lattice� in the case ofl1 norm are:
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X
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whereNm is the number of points of the lattice that have the norm
m.

The ~� series of the integersZare~�3(z) while for its translate
Z+ 1=2 the series are~�2(z).

Thel1 norm has the propertyN((x1; x2; : : : ; xn)) = N(x1)+
N(x2) + : : :+N(xn) (like the Euclidean norm). Thus we have:

~�Zn(z) = ~�Z(z)
n = ~�3(z)

n: (6)
The latticeDn is the sub-ensemble of theZn lattice for which

the sum of the components of a lattice vector is even. Its~� series
can be obtained like in the Euclidean norm case:

~�Dn(z) =
1

2
(~�3(z)

n + ~�4(z)
n): (7)

And finally for the latticeD+
n the ~� series are
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Forn = 10 the distribution of points on the first 6 pyramidal
shells of normm is as follows:

m 0 2 4 5 6 7
Nm 1 200 6800 512 103000 28160

Table 1. Distribution of lattice points on pyramids

and on spheres of radiusm is as presented in [2]:

m2 0 2 2.5 4 4.5 6 6.5
Nm 1 180 512 3380 5120 16320 23040

Table 2. Distribution of lattice points on spheres

3.3. A fast algorithm for nearest neighbor search inD+
10

A fast nearest neighbor (NN) algorithm inD+
10 can be obtained by

first searching in theD10 lattice (as presented in [2]), then in the
translatedD10 lattice (see (3)) and taking the best result. As the
search has to be performed on a truncated lattice we have derived
a suboptimal algorithm that uses binary search. The algorithm is
based on the fact that in the truncated lattice an approximative NN
of a pointx can be found by checking the NN’s inD+

10 for a set
of points having similar orientations asx but different norms. If
NN of x is inside the truncation limit nothing else has to be done,
otherwise the search procedure is used. The initial range of norms
is set to be from 0 toN(x) and the test point is placed in the
middle. At each step the NN of the test point is obtained and if it is
within the truncation limit the lower search limit is increased to the
test position otherwise the upper limit is similarly decreased. The
search stops when the search range is smaller than a ’significant’
distance in the lattice or if the same NN’s are obtained at both ends
of the search region.

This is a general algorithm that works for both spherical and
pyramidal truncation. In the case of pyramidal truncation thel1
norm is used when making the decision inside/outside.
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Figure 1: MSLVQ for latticeZ2 with the scales 0.7(�), 1.0(x),
1.8(*) and 4.5(o)

3.4. Enumeration of the codevectors

Several methods for the enumeration of the points of a pyramidal
truncated lattice [3] or spherical and pyramidal [7] exist in the lit-
erature. We have utilized an algorithm that demands memory only
for the table (2) and is suited (without further adaptation) to the
spherical truncation of the latticeD+

10. It uses a procedure of enu-
merating combinations and it is based on the special properties of
the lattice vectors on each layer (e.g. on the first layer there can be
vectors that have only two components of unitary absolute values,
the others being zero).

4. PREDICTIVE MULTIPLE-SCALE LATTICE VQ

A predictive VQ [10] scheme exploits the memory of the input
vectors by computing first the predicted vector and then quantiz-
ing the prediction error. The prediction is based only onprevious
quantizedvectors. The predictor may be of AR or MA type and it
has been shown experimentally [10] that it is sufficient to use only
the diagonal elements of the prediction matrices. The AR predic-
tor used in this study has the form:!pt =

PN
i=1 pi!̂t�i, where!pt

is the predicted value,̂!t�i the previous quantized values,N the
predictor order andpi the predictor coefficients.

In this work the truncated lattice is used for the quantization
of the prediction errors. It is well known that in the scalar case the
distribution of the prediction error is close to a Laplacian distri-
bution. From Figure 1 one can see that a multiple-scale truncated
lattice is closer to Lloyd Max optimum quantizer when compared
to an uniform lattice, for a given size of the codebook.

The constantK defining the truncation of the lattice in (2) is
selected such thatT contains all lattice points on a given number
of shells. Now introducing also the multiple scaling factors we
will define our codebook as follows:�

sy j y 2 D+
10; N(y) < K; s 2 fs1; : : : ; sSg

�
(9)

wheres is the scaling factor andS is the number of scaling factors.
The index of the codevector to be transmitted should be formed

by the index of the lattice point and the index of the scaling factor.

Some related methods used to obtain a lattice quantizer for a
non-uniform source have already been presented in the literature as
the multidimensional companding [9] and the embedded algebraic
VQ [15] or piecewise uniform lattice VQ [5]. We have tested the
companding by transforming the distribution of the input vectors
into a uniform one using spherical companding. However, in the
truncated lattice there is a small number of norm levels (e.g. 15 for
221 codevectors) that might induce large errors in the norm at the
uncompanding procedure.

5. EXPERIMENTAL RESULTS

We experimented the predictive multiple-scale lattice VQ for the
quantization of LPC parameters, by utilizing the same LPC com-
putation procedure used in G.729 codec. There, a 10-th order LPC
analysis with 10 ms analysis frame is employed, based on the auto-
correlation method and the use of a 30 ms Hamming window.

One part from the training set of the TIMIT speech database,
consisting of 115006 frames, has been used for the design of the
AR predictor of order 2 and the optimization of scales. The re-
sults were not significantly different when we used 4 scales or
8 scales. The testing data have been the remaining part of the
training set,Ttrn, (up to 1400000 frames) and the test set ,Ttst,
(about 500000 frames) of the TIMIT speech database. The experi-
ments have shown that a spherical truncated lattice performs better
than a pyramidal truncated one. This is in part due to the reparti-
tion on pyramidal shells of the lattice points given in subsection
3.2. It should be noted that due to the structure of the lattice, the
number of available codevectors at a given bit-rate (power of 2) is
greater than the number of used codevectors. This results in differ-
ent bit utilization efficiencies for the different truncations, number
of scales or bit-rates. However the unused codevector indexes can
be used for increasing the resilience of coding.

SD > 1 > 4 > 6 [2; 4] Data
(dB) (%) (%) (%) (%)
1.356 56.17 1.03 0.19 16.93 Ttst

Table 3. Spectral distortion for a pyramidal truncated lattice
(110513 codevectors, K = 6), 2 scales (1.0 3.0 ), (18 bits=17+1):

SD > 1 > 4 > 6 [2; 4] Data
(dB) (%) (%) (%) (%)
1.199 47.97 0.73 0.02 10.57 Ttrn
1.201 48.07 0.74 0.02 10.61 Ttst

Table 4. Spectral distortion for a spherical truncated lattice
(25513 codevectors, K = 2.45), 8 scales (0.7 1.0 1.2 1.5 1.8 2.0

4.0 6.0), (18 bits=15+3):

SD > 1 > 4 > 6 [2; 4] Data
(dB) (%) (%) (%) (%)
1.156 43.42 0.75 0.02 9.45 Ttrn
1.157 43.51 0.76 0.02 9.49 Ttst

Table 5. Spectral distortion for a spherical truncated lattice
(48553 codevectors, K =

p
6:5), 4 scales (0.7 1.0 1.8 4.5), (18 bits

= 16+2)

The predictive MSLVQ scheme is compared with the codec
G.729 in terms of spectral distortion of the quantized LSF coef-
ficients (1). For the same bit-rate the average spectral distortion



with our quantization scheme is smaller than that of G.729 and the
number of outliers is also smaller. Informal listening tests have
shown good performance of the MSLVQ scheme.

SD > 1 > 4 > 6 [2; 4]
(dB) (%) (%) (%) (%)
1.347 67.74 0.46 0.02 12.00

Table 6. Spectral distortion for G.729

The results for the spherical companding from Table 7 show
that, as expected, the violation of the high rate assumption leads to
worse quantization performance.

bits SD > 1 > 4 > 6 [2; 4]
(dB) (%) (%) (%) (%)

19 1.496 58.95 5.32 1.78 10.79
20 1.404 50.08 4.68 1.51 10.14
21 1.348 44.37 4.43 1.36 9.97
22 1.308 40.55 4.29 1.24 9.88

Table 7. Spectral distortion using companding for spherical
truncated lattice

It is important to note that at a bit-rate of 21 bits/frame the
MSLVQ scheme can give an average spectral distortion of 0.93
dB.

bits SD > 1 > 4 > 6 [2; 4]
(dB) (%) (%) (%) (%)

19 1.081 37.53 0.61 0.01 7.79
20 1.015 32.45 0.47 0.00 6.42
21 0.927 25.74 0.33 0.00 4.59
22 0.866 21.14 0.23 0.00 3.44

Table 8. Spectral distortion for a spherical truncated lattice, 4
scales

bits SD > 1 > 4 > 6 [2; 4]
(dB) (%) (%) (%) (%)

19 1.094 39.70 0.43 0.01 8.21
20 1.022 33.90 0.31 0.00 6.61
21 0.961 28.86 0.22 0.00 5.38
22 0.880 22.46 0.10 0.00 3.79

Table 9. Spectral distortion spherical truncated lattice, 8 scales

6. CONCLUSION

In this work we have introduced a new lattice quantization scheme.
It uses a truncation of theD+

10 lattice. The codebook is composed
of several copies of this truncation, scaled with different scaling
factors. This way one has to encode the index of the lattice code-
vector and the corresponding scale. A method for the calcula-
tion of the number of lattice points on each pyramidal shell has
been presented as well as a fast algorithm for the nearest neigh-
bor search in the truncated lattice (pyramidal or spherical). The
resulting quantization scheme has been applied to LPC quantiza-
tion and was shown to perform better (for the same bit rate - 18
bits/frame) than the quantization scheme from the codec G.729.
Besides this performance in terms of spectral distortion, it should
be noted that no memory is necessary for the codebook and a fast

search algorithm is available. The MSLVQ scheme achieves an
average spectral distortion of 0.93 dB at 21 bits/frame.
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