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ABSTRACT

In this contribution we present an algorithm for estimating some
parameters of offset in the case of incomplete data. This estimation
cannot be performed directly with an EM or SEM method because
the density of local extrema in the likelihood map grows expo-
nentially with the number of observations and because the SEM
method provides a monotonic sequence of estimates so that bad
initialization cannot be recovered. We perform the estimation in
the Fourier domain. The offsets in time domain are transformed
into pulsations in the Fourier domain. We minimize a quadratic
distance between the parametric and empirical sampled Fourier
transform with an EM method. Contrary to the problems encoun-
tered in the time domain the asymptotic loglikelihood of the sam-
pled empirical Fourier transform is continuous w.r.t. the parame-
ters of offset. We discuss the influence of the frequencies at which
the Fourier transform is sampled and we present a numerical study
of convergence of the proposed algorithms.

1. INTRODUCTION

Some previous studies have proved that Fourier transform based
techniques enable estimation of the proportions of a mixture ( see
[1] and the references therein) . In this paper we discuss the possi-
bility of using weighted distances between Fourier transforms and
their empirical counterparts for estimating some parameters of off-
set in the case of incomplete data, a problem that cannot be solved
by classical approaches. Semi-Markov processes (HMM, MRP...)
with shifted exponential conditional lawsf�;�(x) = � exp(��(x�
�))1I[�;+1[(x) are generalizations of standard models of teletraf-
fic such as the Poisson process or the MMPP. These models with
offset fit the marginal distribution of the inter-event times better
than standard models [2]. Modeling and estimating teletraffic is an
important issue for dimensioning telecommunication networks.

The rest of the paper is organised as follows. In Section 2 we
explain why MLE in the time domain is not viable in the case of
incomplete data. In Section 3 we recall some techniques for esti-
mating a single offset and we note that these techniques do not gen-
eralize to the case of incomplete data. In order to overcome these
problems we present two Fourier transform based algorithms. The
influence of the points at which the Fourier transform is sampled
and the performances of the algorithm is discussed.

This work was supported by France Telecom research center under
contract number PE95-7633.

2. FAILURE OF MLE IN THE TIME DOMAIN

2.1. Failure of the EM algorithm

Denote byL(x; �) the loglikelihood of the observationsx = x1:T
when the parameters of shift are equal to� = (�i)1�i�K. When
(Xt)t is an i.i.d. sequence distributed as a mixtureL(x; �) =P
t log(

P
i �if0;�i (xt� �i)) andL(x; �) is discontinuous at any

point� = (�i)1�i�K such that one of thext is equal to one of the
�i. Consequently the likelihood mapL(x;�) has infinitely many
local extrema that attract the EM algorithm [3]. When(Xt)t is a
HMM same discontinuities are encountered.
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Figure 1: Discontinuities of the likelihood in time domain.�1 =
�2 = 0:5, �1 = 1, �2 = 2, �1 = 2, �2 = 4.

2.2. Failure of the SEM algorithm

In the presence of local extrema one often uses the SEM algorithm
[4]. Each iteration of the SEM algorithm can be decomposed into
two steps:

1. Stochastic Expectation step

Compute by means of the forward backward algorithm the
distribution of the unobservedS1:T conditionally to the observed
X1:T = x1:T for the value�k of the set of parameters. Simulate
S1:T under this distribution. The result is denoted bysk = sk1:T .

2. Maximization step



Maximize the complete loglikelihoodL(x1:T ; sk1:T ; �) :

L(x1:T ; s
k
1:T ; �) = L(sk1:T ) +

X
i

X
t

1Isk
t
=i log f�i;�i (xt)

If xt < �ki thenP(st= i j xt; �k) = 0 and a.s.skt 6= i so that
�ki � min(xt; s

k
t = i). If xt < �i then

P
t 1Isk

t
=i log f�i;�i (xt) =

�1 so that�k+1i � min1�t�T ;sk
t
=i(xt) and this function strictly

increases over]�1;min(xt; skt = i)[ yielding�k+1i = min(xt; skt =
i) � �ki .

The sequence(�ki )k2N increases so that a bad initialization
cannot be corrected.

2.3. Lack of Cramer-Rao Lower Bound (CRLB)

Maximum likelihood techniques are justified by the fact that the
MLE is asymptotically unbiased and that its variance converges
to CRLB = E� (

d2�
d�2

log f(X;�)). For the problem under study
the loglikelihood is not derivable w.r.t. the parameters of shift and
the conditions under which the CRLB is derived are not fulfilled.
However, in the Fourier domain the normalized sampled Fourier
transform converges to a gaussian distribution which belongs to
the exponential familyf(x; �) = c(�)h(x) exp(< �(�); T (x) >)
and the MLE is known in this case to be efficient.

3. ESTIMATION OF A SINGLE SHIFT PARAMETER

In this Section we recall some techniques for estimating a param-
eter of offset when the observations are i.i.d. with p.d.f.f�(x) =
f0(x� �) andf0(x) = 0 if x < 0.

3.1. Maximum Likelihood Estimation

The loglikelihood ofx1:T is L(x1:T ; �) =
PT

t=1 log f0(xt � �)
so thatL(x1:T ; �) = �1 if xt < � for some t. In the case when
f0(�) strictly decreases overR+ and in particular in the case of the

shifted exponential distribution̂�ML = Xmin
�
= min1�t�T Xt.

3.2. Bayesian estimation techniques

The choice of a prior distribution is usually the controversial point
in Bayesian estimation. Denote byg(�) the prior distribution of
�. Thenf(x1:T ) = (f0 � g)(x1:T ) where� denotes convolution.
f(x1:T ) is maximum forg(�) = f0(x1:T��)R

f0(x1:T��)d�
which acts as a

matched filter onf0(x1:T ). For this choice of prior distribution
the Maximum A Posteriori iŝ�MAP = Argmax� f(� j x1:T ) =
Xmin whenf0 strictly decreases overR+ and the mean squared
error estimator iŝ�EQM = E(� j X1:T ) = Xmin � (2�T )�1 in
the case of the shifted exponential distribution.

3.3. Pitman estimator

Consider the set of all equivariant estimators of�, S(x1:T + �) =
� + S(x1:T ). It is natural to look for an estimator satisfying this
property when one is concerned with the estimation of a parameter
of shift. The equivariant estimator with minimum quadratic risk
function is the Pitman estimator [5]. In the case of the shifted
exponential distribution̂�PIT = Xmin� (�T )�1.

3.4. Barankin estimator

The Barankin bound [6] is the greatest lower bound among mini-
mum variance bounds for unbiased estimators. As a byproduct the
calculation of this bound supplies a locally, and possibly globally,
minimum variance unbiased estimate. In particular, for a shifted
exponential distribution, we can obtain the minimum variance un-
biased estimator̂�B(X) = Xmin � (�T )�1 [6].

The above methods do not permit estimation of the offset pa-
rameters of a mixture. In order to overcome the limitations of these
methods we propose solving this problem in the Fourier transform
domain.

4. ESTIMATION IN THE FOURIER DOMAIN

4.1. The offsets in the time domain are transposed into pulsa-
tions in the Fourier domain

Denote by�(!) =
R
ei!xf(x)dx the characteristic function of

f(x). Note that a shift in the time domain is equivalent to a mod-
ulation by a complex exponential in the Fourier domain the off-
set parameters(�i)1�i�K being the frequencies of the modulating
complex exponentials :�(!) =

P
i �ie

i!�i�0;�i (!). This note
will permit the construction of an estimator of� = (�i)1�i�K
from a sampled empirical estimate(�̂(!1); � � � ; �̂(!L)) where
�̂(!) = 1

T

P
1�t�T e

i!Xt .

4.2. Central Limit Theorem [7]

Denote by!1; !2; � � � ; !L the pulsations at which the Fourier trans-
form is sampled. Denote bym(�) = (�(!1);�(!2); � � � ;�(!L))T
the sampled Fourier transform off(�) and denote the empirical
sampled Fourier transform byZT = T�1

P
Yt whereYt is the

vector with entry1 � l � L is ei!lXt.

Theorem 1 Suppose that(Xt)t is i.i.d. or a finite state irre-
ducible Markov chain; then it holds that

p
T (ZT � m(�)) �

AN (0;�(�)) where�(�) = E� ((Yt � m)(Yt � m)H) in the
i.i.d. case and�� =

P
�2Z E� ((Yt+� �m)(Yt+� �m)H) in the

HMM case.

4.3. Maximum Likelihood Estimation

Our procedure consists in minimizing the asymptotic loglikelihood
of the normalized sampled Fourier transform :

J(�) = log j�(�)j+ 1

2
T (ZT �m(�))H��1(�)(ZT �m(�))

Standard optimization techniques (gradient method, Newton
method, conjugate gradient method...) can be used to maximize
J(�). Let us consider the asymptotic covariance matrix�(�).
When(Xt)t is i.i.d. then�ij(�) = ��(!i � !j). When(Xt)t is
a HMM it is simpler to replace�(�) with a consistent estimatê�T
and to optimizeK(�) = (ZT �m(�))H �̂�1T (ZT �m(�)).

4.3.1. Problems related to sampling the Fourier transform

Contraction of the loglikelihood map

Suppose that!1 < !2 < � � � < !L. If !1 � 2�=Xmax

whereXmax = max1�t�T Xt there exists a one to one mapping



between(Xt)1�t�T and(Yt)1�t�T . In what follows we discuss
the influence of the choice of the points(!1; � � � ; !L) at which the
Fourier transform is sampled.
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Figure 2:! = 2�=Xmax, K = 2,�1 = �2 = 0:5,�1 = �2 =
1,�1 = 1,�2 = 2,T = 5000

Note that(!1; � � � ; !L) ! �(!1; � � � ; !L)results in a con-
traction of� ! K(�) when� > 1 (Fig. 2) and in a dilatation of
� ! K(�) when� < 1 (Fig. 3). For the sake of simplicity we
suppose in what follows that the sampling is regular!k = k!1.
Let us study the effects of some variations on!1. First of all there
are clearly more local extrema in� ! K(�) as!1 increases be-
cause of the contraction effect mentioned above. The optimization
algorithms consequently get trapped in the local extrema if!1 is
too large. For example let us chooseT = 1000; L = 1;K =
2; �1 = �2 = 0:5; �1 = �2 = 2; �1 = 1; �2 = 2. The initial-
ization of� is random with uniform distribution on[0;3]� [0; 3].
If the condition!1 < 2�

Xmax

is not fulfilled, the estimatê� gets

trapped in the local extrema ofK(�) : for !1 = 2�
Xmax

�2� ' 10�3

and for!1 = 10 2�
Xmax

�2� ' 1 where�2� denotes the sum of the
variances of the estimate of the offsets. It results from this dis-
cussion that!1 should be chosen as small as possible in order to
avoid local extrema. But another effect of the choice of frequen-
cies at which the Fourier transform is sampled is that the covari-
ance matrix� has too high a condition number for optimization to
be possible when!1 is very small. This point is discussed in what
follows.

Condition number of the covariance matrix

Recall first of all that if the(Xt)t are i.i.d. then the ma-
trix � has entry (i,j)�(i; j) = �(!i � !j). Since!k = k!1
the covariance matrix� tends to the rank one matrixeeT where
e = [1; 1; � � � ; 1]T when!1 tends to zero. The condition number
of � is thus very high if!1 is too small. Table 1 provides the con-
dition number of� for different values of!1 = �2�=Xmax and a
growing numberL of sampling points.

As one can see in Table 1 the condition number of� grows
very quickly with the numberL of frequencies at which the Fourier
transform is sampled. A contradictory effect ofL is that the vari-
ance of the estimatê� is lowest if the numberL of sampling points
is high; the variance of the estimate decreases asO(1=L) until
L = T and then the variance stabilizes. Table 2 shows this result.
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Figure 3:! = 20 � 2�=Xmax, K = 2,�1 = �2 = 0:5,�1 =
�2 = 1,�1 = 1,�2 = 2,T = 5000

L � 0.001 0.01 0.1 1 10 100 1000

2 105 104 100 1 1 1 1
5 1013 109 105 10 1 1 1
10 1018 1017 109 100 10 1 1

Table 1: Condition number of� with T = 1000;K = 2; �(1) =
�(2) = 0:5;�1 = �2 = 2; �1 = 1; �2 = 2.

In order to deal with the contradictory effects of the choice
of the frequencies at which the Fourier transform is sampled we
suggest the following approach. We successively estimate� for
simultaneously increasing values of� andL so that the condition
number of�̂ remains reasonable and we use the previous estimate
of � as an initial guess while changing� andL. The use of this
previous estimate avoids converging to a local minimum ofK(�)
when� increases. A possible alternative approach consists in re-
placing the consistent estimatê� with the identity matrix in the
criterionK(�).

4.4. Least mean square estimation

In this Section we propose to undertake a least mean square esti-
mation i.e. to minimizeM(�) = kZT �m(�)k2.

4.4.1. Expectation Maximization method

The above problem is equivalent to maximizing the likelihood of
ẐT w.r.t. � for the following distribution :

8<
:

Z = W1 +W2 + � � �+WK

(Wk)k independent
Wk � N (mk(�k);�k)

wheremk(�k) = �k[e
j!1�k�0;�k (!1); � � � ; ej!L�k�0;�k (!L)]

T .
An EM algorithm makes it possible to split the optimization of the
likelihood into simpler one dimensional optimizations.

1. Expectation step



ComputeQ(�; �k) = E(L(W; Z; �) j Z = z;�k) = C �
1
2

P
i �
�1=2
i kmi(�

k
i )�mi(�i)+�i�

�1(z�PK
j=1mj(�

k
j )k2��H=2i .

2. Maximization step
If one supposes that theWis all have the same covariance ma-

trix �i = K�1� the criterion to minimize w.r.t.�i reduces to
kmi(�

k
i ) � mi(�i)) + K�1(z �PK

j=1mj(�
k
j )k2 and�k+1i =

Argmin�i kmi(�
k
i )�mi(�i)) +K�1(z �PK

j=1mj(�
k
j )k2.

4.4.2. Simplified maximization step

The criterionkmi(�
k
i ) �mi(�i)) + K�1(z �PK

j=1mj(�
k
j )k2

can be reduced to a quadratic form in�i though yielding analytical
reestimation for�i.

Denote by�li = mi(�i) � K�1(z � m(�k)) and by l =
Arg(�li) then�li ' �i j�0;�i (!l)j ej l and a second order devel-
opment yieldskmi(�i)��ik2 'Pl �

2
i j�0;�i (!l)j2 (!l�i� l)2

and

�k+1i =

P
l j�0;�i (!l)j2 !l lP
l j�0;�i (!l)j2 !2l

4.5. Example

The algorithm is used to estimate the offsets of a four component
mixture of shifted exponential distributions. The parameters of
offset are�1 = 1; �2 = 2; �3 = 3 and�4 = 5 and the intensities
of the exponentials are all equal to� = 2. The Fourier trans-
form of the mixture is considered at only one (L = 1) pulsation
! = 2�

Xmax
. The EM method 4.4.1 as well as the optimization of

the simplified criterion 4.4.2 are considered. The Table below lists
the mean and variance of the estimates of the offsets forT = 1000
independent realisations of the four component mixture. The per-
formance of the algorithms in the case of small samples has also
been investigated. ForT = 100 independent realisations of the
mixture the obtained bias is of the order of0:1 times the true pa-
rameters of offset and the variance of the estimates is between0:02
and0:10 for both the EM and the simplified algorithm. The esti-
mates at successive iterations of the EM algorithm are plotted in
Figure 4 for small samplesT = 100.

L 1 10 100 1000 10000 100000
�� 10�3 10�4 10�5 10�6 10�6 10�6

Table 2: Variance of̂�. T = 1000;K = 2;�(1) = �(2) =
0:5;�1 = �2 = 2; �1 = 1; �2 = 2;! = 2�=Xmax

Algorithm 4.4.1 Algorithm 4.4.2
E(�̂k ) var(�̂k) E(�̂k ) var(�̂k)

�1 0:99 1:5� 10�3 1:06 1:9� 10�3

�2 2:21 1:7� 10�3 2:20 1:9� 10�3

�3 2:72 2:1� 10�3 2:70 2:5� 10�3

�4 5:06 6 � 10�3 5:07 7:6� 10�3

Table 3: Mean and variance of the estimators.
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Figure 4: T = 100. L = 1. ! = 2�=Xmax. �1 = 1; �2 =

2; �3 = 3; �4 = 5. �̂1 = 1:10; �̂2 = 2:29; �̂3 = 2:78; �̂4 = 5:10.

5. CONCLUSION

Time domain approaches do not enable the estimation of a mix-
ture in some cases when offset parameters are unknown. We have
proposed some Fourier transform based algorithms for estimating
those parameters. When all but the offset parameters are known a
good choice of sampling for the characteristic function results in
no local extrema. In this context analytical reestimation formulae
have been derived thus permiting estimation with extremely low
computational burden and fast convergence.
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