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ABSTRACT 2. FAILURE OF MLE IN THE TIME DOMAIN

. _— . L 2.1. Failure of the EM algorithm
In this contribution we present an algorithm for estimating some

parameters of offsetin the case of incomplete data. This estimationpenote byZ(x; §) the loglikelihood of the observations= .7
cannot be performed directly with an EM or SEM method because when the parameters of shift are equafte- (0:)1<i<x. When
the density of local extrema in the likelihood map grows expo- (X,), is an ii.d. sequence distributed as a mixtirer; ) =
nentially with the number of observations and because the SEM Nog (32, mifox (we — 8;)) andL(x; 8) is discontinuous at any
method provides a monotonic sequence of estimates so that bagointg = (6,)1<i<x suchthat one of the, is equal to one of the
initialization canot be recovered. We perform the estimation in g, Consequently the likelihood malp(x;¢) has infinitely many
the Fourier domain. The offsets in time domain are transformed |ocal extrema that attract the EM algorithm [3]. WhexX, ). is a
into pulsations in the Fourier domain. We minimize a quadratic HMM same discontinuities are eogntered.

distance between the parametric and empirical sampled Fourier

transform with an EM method. Contrary to the problems encoun-

tered in the time domain the asymptotic loglikelihood of the sam- Mixture of two shifted exponentials -, =16, =2

pled empirical Fourier transform is continuous w.r.t. the parame-
ters of offset. We discuss the influence of the frequencies at which
the Fourier transform is sampled and we present a numerical study 2

T = 10 observations

of convergence of the proposed algorithms. 10
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techniques enable estimation of the proportions of a mixture ( see He ”"'/'5:‘3’,';"'5”
[1] and the references therein) . In this paper we discuss the possi- i
bility of using weighted distances between Fourier transforms and
their empirical counterparts for estimating some parameters of off-
setin the case of incomplete data, a problem that cannot be solvec 0 o o
by classical approaches. Semi-Markov processes (HMM, MRP...)

with shifted exponential coritibnal laws fo () = A exp(—A(x— ) . N e )
8))1e.+ () are generalizations of stanc(ia)rd models( of t(eletraf- Figure 1: Discontinuities of the likéibod in time domainz; =
fic such as the Poisson process or the MMPP. These models with™2 = 0-5; fr=10=2X =2Xx=1

offset fit the marginal distribution of the inter-event times better

than standard models [2]. Modeling and estimating teletraffic is an

important issue for dimensioning telecommunication networks.

The rest of the paper is organised as follows. In Section 2 we 2-2. Failure of the SEM algorithm
explain why MLE in the time domain is not viable in the case of
incomplete data. In Section 3 we recall some techniques for esti-
mating a single offset and we note that these techniques do not gen[4]' .
eralize to the case of incomplete data. In order to overcome thesdWo Steps:
problems we present two Fourier transform based algorithms. The 1. Stochastic Expectation step
influence of the points at which the Fourier transform is sampled
and the performances of the algorithm is discussed.
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In the presence of local extrema one often uses the SEM algorithm
Each iteration of the SEM algorithm can be decomposed into

Compute by means of the forward backward algorithm the
distribution of the unobservesh .- conditionally to the observed
X1.7 = x1.7 for the values* of the set of parameters. Simulate

S1.r under this distribution. The result is denoteddiy= s%. .
This work was supported by France Telecom research center under e y= ST

contract number PE95-7633. 2. Maximization step




Maximize the complete loglikelihoo8(z1.7, s§.7;6)

L(str)+ Y Y Vo log fo,x, (w0)
7 t

L(x11T7 SIIC:T; 6)

If 2, < 8F thenP(s, = i | #¢;8%) = 0 and a.ss} # i so that
gk < min(zy; sk = i). If z; < 8, theny_, ﬂsf:i log fo, : (z¢) =
—oo sothagft! < min, ., .7, .5 -;(2) and this function strictly

increases ovgrk-oo, min(z.; st = i)[ yieldingd*+t* = min(z,; sf =
i) > 6%,
The sequencéd’)xen increases so that a bad initialization

cannot be corrected.

2.3. Lack of Cramer-Rao Lower Bound (CRLB)

Maximum likelihood techniques are justified by the fact that the
MLE is asymptotically unbiased and that its variance converges

to CRLB = Ee(% log f(X;8)). For the problem under study
the loglikelihood is not derivable w.r.t. the parameters of shift and
the conditions under which the CRLB is derived are not fulfilled.
However, in the Fourier domain the normalized sampled Fourier
transform converges to a gaussian distribution which belongs to
the exponential family'(x; 8) = c(8)h(z) exp(< a(8),T(z) >)

and the MLE is known in this case to be efficient.

3. ESTIMATION OF A SINGLE SHIFT PARAMETER

In this Section we recall some techniques for estimating a param-

eter of offset when the observations are i.i.d. with p.fifiz) =
fo(:L‘ - 6) andfo(x) =0if z < 0.

3.1. Maximum Likelihood Estimation

The loglikelihood ofz1.7 is L(z1.7;8) = ._, log fo(z: — 6)
so thatL(z1.7;60) = —oo if 2 < 6 for some t. In the case when
fo(e) strictly decreases ov&@* and in particular in the case of the

shifted exponential distributiofi;, = Xmin 2 ming <i<r Xi.

3.2. Bayesian estimation techniques

The choice of a prior distribution is usually the controversial point
in Bayesian estimation. Denote lpyd) the prior distribution of

8. Thenf(z1.7) = (fo * g)(z1.7) wherex denotes convolution.
f(z1.7) Is maximum forg(8) = % which acts as a
matched filter onfo(z1.7). For this choice of prior distribution
the Maximum A Posteriori iy 4p = Argmaxe f(8 | z1.7) =
Xumin When f; strictly decreases ovét* and the mean squared
error estimator i9son = F(6 | X1.7) = Xmin — (2AT) "1 in

the case of the shifted exponential distribution.

3.3. Pitman estimator

Consider the set of all equivariant estimatorg of (z1.7 + u) =
p+ S(z1.7). Itis natural to look for an estimator satisfying this

3.4. Barankin estimator

The Barankin bound [6] is the greatest lower bound among mini-
mum variance bounds for unbiased estimators. As a byproduct the
calculation of this bound supplies a locally, and possibly globally,
minimum variance unbiased estimate. In particular, for a shifted
exponential distribution, we can obtain the minimum variance un-
biased estimatats (X ) = Xmin — (AT) " [6].

The above methods do not permit estimation of the offset pa-
rameters of a mixture. In order to overcome the limitations of these
methods we propose solving this problem in the Fourier transform
domain.

4. ESTIMATION IN THE FOURIER DOMAIN

4.1. The offsets in the time domain are transposed into pulsa-
tions in the Fourier domain

Denote by®(w) = [ e*“* f(x)dz the characteristic function of
f(x). Note that a shift in the time domain is equivalent to a mod-
ulation by a complex exponential in the Fourier domain the off-
set parameter®. ), << x being the frequencies of the modulating
complex exponentials®(w) = 3, mie"“? @ », (w). This note
will permit the construction of an estimator 6f= (8:):1<i<x

from a sampled empirical estimaté(w:),--- ,®(wr)) where

(w) = % ZlgtST i

4.2. Central Limit Theorem [7]

Denote byw;, w2, - - -, wy, the pulsations at which the Fourier trans-
formis sampled. Denote byt (8) = (®(w:1), ®(ws), - , P(wz))?
the sampled Fourier transform ¢fe) and denote the empirical
sampled Fourier transform by = 77" 3" Y; whereY; is the
vector with entryl <1 < L ise®“t X,

Theorem 1 Suppose thatX;); is i.i.d. or a finite state irre-
ducible Markov chain; then it holds tha¢T(Zr — m(8)) ~

AN(0,T(8)) whereT'(8) = Fo((Y; — m)(V; — m)HH) in the
iid. caseand’s = > o, Fo((Yitr — m)(Yiqr —m)™)inthe
HMM case.

4.3. Maximum Likelihood Estimation

Our procedure consistsin minimizing the asymptotic loglikelihood
of the normalized sampled Fourier transform :

J(0) =log[I'(9)] + %T(ZT —m(8))"T7(8)(Zr — m(6))

Standard optimization techniques (gradient method, Newton
method, conjugate gradient methog can be used to maximize
J(8). Let us consider the asymptotic covariance matri#).
When(X;): is i.i.d. thenl';;(6) = ®o(w; — wj;). When(X;); is
a HMM itis simpler to replacé'(¢) with a consistent estimafer
and to optimizel (8) = (Z7 — m(8))" 17" (Z7 — m(8)).

4.3.1. Problems related to sampling the Fourier transform

property when one is concerned with the estimation of a parameter

of shift. The equivariant estimator with minimum quadratic risk
function is the Pitman estimator [5]. In the case of the shifted
exponential distributiod prr = Xmin — (AT) ™.

Contraction of the loglikelihood map

Suppose thab; < w2 < -+ < wr. If w1 < 27/ Xmax
whereXma.x = max)<:<7 X there exists a one to one mapping



between(X:)1<:<r and(Y:)i1<i<7. In what follows we discuss
the influence of the choice of the poirits, , - - - ,wz ) at which the
Fourier transform is sampled.
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Figure 2:w = 27/ Xmax, K = 2,m1 = 72 = 0.5,A1 = X\ =
1,6, = 1,8, = 2,7 = 5000

Note that(wy, -+ ,wr) = a(wi,- - ,wr)results in a con-
traction ofé — K (8) whena > 1 (Fig. 2) and in a dilatation of
6 — K(9) whena < 1 (Fig. 3). For the sake of simplicity we
suppose in what follows that the sampling is regular= kw; .
Let us study the effects of some variationsuan First of all there
are clearly more local extrema th— K (9) asw: increases be-

cause of the contraction effect mentioned above. The optimization

algorithms consequently get trapped in the local extrema iis
too large. For example let us choofe= 1000,L = 1, K =
2,71'1 = Ty = 0.5,)\1 =X = 2,61 = 1,62 = 2. The initial-
ization of¢ is random with uniform distribution of®, 3] x [0, 3].

If the conditionw: < 22— is not fulfilled, the estimaté gets

trapped in the local extrema &f (6) : forw; = 27— 0§ ~ 107°
2m

and forw, = 10527 o7 =~ 1 wheres} denotes the sum of the
variances of the estimate of the offsets.

Figure 3:w = 20 X 27/ Xmax, K

Ao =101 = 1,0, = 2,7 = 5000

=2m = m = 0.5 =

[C o JO001] 001 01I] 1 |10 100] 1000]
2 10° 10 T100] 1 1 1 1
5 10! 10° [10° | 10 | 1 1 1
10 10" |10 [ 10° [100] 10| 1 1

Table 1: Condition number df with 7" = 1000; K = 2; =(1) =
71'(2) =05 A =X =2;6; =1;6, = 2.

In order to deal with the contradictory effects of the choice
of the frequencies at which the Fourier transform is sampled we

suggest the following approach.

We successively estimdte

simultaneously increasing values®fand L so that the condition
number ofl* remains reasonable and we use the previous estimate
of 8 as an initial guess while changimgand .. The use of this
previous estimate avoids converging to a local minimunid#)
whena increases. A possible alternative approach consists in re-

cussion that; should be chosen as small as possible in order to Criterion K (¢).

avoid local extrema. But another effect of the choice of frequen-

It results from this dis- placing the consistent estimatewith the identity matrix in the

cies at which the Fourier transform is sampled is that the covari- 4.4. Least mean square estimation

ance matriX" has too high a condition number for optimization to
be possible whew; is very small. This point is discussed in what
follows.

Condition number of the covariance matrix

Recall first of all that if the(X;); are i.i.d. then the ma-
trix I' has entry (i)I'(z,5) = ®(w: — wj). Sincewr = kw
the covariance matriX' tends to the rank one matrie” where
e =[1,1,---,1]7 whenw, tends to zero. The condition number
of I is thus very high ifv; is too small. Table 1 provides the con-
dition number ofl” for different values ofv; = a27/ Xmax and a
growing numbet. of sampling points.

As one can see in Table 1 the condition numbel ajrows
very quickly with the numbek of frequencies at which the Fourier
transform is sampled. A contradictory effectlofis that the vari-
ance of the estimateis lowest if the numbef, of sampling points
is high; the variance of the estimate decrease®@ls/L) until

L =T and then the variance stabilizes. Table 2 shows this result.

In this Section we propose to undertake a least mean square esti-

mation i.e. to minimizeM (8) = || Zr — m(9)

[

4.4.1. Expectation Maximization method

The above problem is equivalent to maximizing the likelihood of
Z7 w.r.t. d for the following distribution :

A =
Wy ~

Wi4+Wa4 - 4+ Wi
independent

N(mr(0x), ')

Wheremk(ek) = Tk [6Jw19k (I)()y)\k (wl), ceey el¥L Ok (I)Oﬁ\k (wL)]T.
An EM algorithm makes it possible to split the optimization of the
likelihood into simpler one dimensional optimizations.

1. Expectation step



ComputeQ(8,0x) = E(L(W, Z;8) | Z = z,6x) = C —

5 30 I 2 lma(61) —ma ()4 TiT (== 30 ), my (85)|PTT 2.
2. Maximization step 10 )
If one supposes that th¥; s all have the same covariance ma-
trix I'; = K ~'T the criterion to minimize w.r.t.¢; reduces to °r i
lmi(8F) — mi(8:) + K~ (= = 3250, my(87)|” andei+! = .
Argming, ||mi(8F) — mi(8:)) + K~z — Zj‘zl m; (05)|°. " ° ¢
4.4.2. Simplified maximization step g %
The criterion|jm. (85) — mi(8:)) + K~ (z — S5, m, (8%)|2 v 0,
can be reduced to a quadratic formfirthough yiefding analytical ok . |
reestimation fo#;. 1
Denote bya: = m;(8:) — K~'(z — m(6")) and byy;, = s |
Arg(at) thena! ~ m; |®o 5, (w1)| e’¥ and a second order devel-
opmentyields{m. (6:) —cil|* = 3=, 77 |Po,x, (wr)[* (wibli 1) S S O S—
and 0 100 200 300 400 500 600 700 800 900 1000

iteration

Figure 4:7 = 100. L = 1. w = 27/ Xmax. 61 = 1,02 =

[ WP w « . A N
gitt = 2u|Pon, (W)l with 2,05 =3,8, = 5.6, = 1.10, 6, = 2.29, 65 = 2.78, 64 = 5.10.

l 320 1®o,x, (wi)* wf

4.5. Example 5. CONCLUSION

The algorithm is used to estimate the offsets of a four componenttime domain approaches do not enable the estimation of a mix-

mixture of shifted exponential distributions. The parameters of {1 in some cases when offset parameters are unknown. We have
offsetaref, = 1,6> = 2,6: = 3 andf, = 5 and the intensities  5oposed some Fourier transform based algorithms for estimating
of the exponentials are all equal 2o = 2. The Fourier trans-  {hoge parameters. When all but the offset parameters are known a
form o;trhe mixture is considered at only onk & 1) pulsation good choice of sampling for the characteristic function results in
no local extrema. In this context analytical reestimation formulae

w = %x=—. The EM method 4.4.1 as well as the optimization of
the simplified criterion 4.4.2 are considered. The Table below lists paye been derived thus permiting estimation with extremely low
computational burden and fast convergence.
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