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ABSTRACT

The Extended Kalman Filter (EKF) algorithm for identification of
a state space model is shown to be a sensible tool in estimating a
Logistic Regression Model sequentially. A Gaussian probability
density over the parameters of the Logistic model is propagated
on a sample by sample basis. Two other approaches, the Laplace
Approximation and the Variational Approximation are compared
with the state space formulation. Features of the latter approach,
such as the possibility of inferring noise levels by maximising the
‘innovation probability’ are indicated. Experimental illustrations
of these ideas on a synthetic problem and two real world problems
are discussed.

1. INTRODUCTION

The logistic regression model is widely used in Bayesian Inference
problems. There are several examples of experimental illustrations
of new, and supposedly more powerful, ideas that perform worse
than the simple logistic model. In Bayesian graphical modelling,
the logistic is often used as the parametric model of conditional
probabilities.
Many problems in inference are characterised by data that arrives
sequentially. This is particularly true in applications in time series
analysis and control of dynamical systems. Sequential estimation
might be of use in classification problems too if one is in a nonsta-
tionary environment and is interested in online reestimation, ap-
plication and refinement of the models. Computational simplicity
in the form of not having to store all the data might also be an
additional motivating factor for sequential learning.
In this paper, I consider the logistic regression model, with Bayesian
training performed sequentially. I show how Bayesian computa-
tions can be performed sequentially in an Extended Kalman Fil-
tering setting. Taking the logistic function through the EKF up-
date equations results in simple update algorithms for the param-
eter mean and covariance matrix. These updates turn out to be
almost identical in form, and even closer in practice, to two other
approaches to the same problem reported in recent machine learn-
ing literature. These are from Spiegelhalter & Lauritzen (1990)
and Jaakkola and Jordan (1996) [13, 5]. The main contribution
of this paper is to points out the simplifications used in the EKF
framework to achieve update equations so similar to the above two.
approaches. We immediately see, and I show this on experimen-
tal simulations, that one might be able to do better by relaxing the
simplifications forced in the EKF.

2. SEQUENTIAL LOGISTIC REGRESSION

Following the notation used in Jaakkolaet al., the logistic regres-
sor is given by

p (s �) = g
�
(2s� 1) �tx

�
;

whereg(:) is the sigmoidg(�) = 1=(1 + exp(��). The un-
certainty in parameters� is represented as a Gaussian probabil-
ity density functionN (�; �). In sequential estimation, we con-
sider examplesfxn; sng arriving one at a time, asn takes values
1; 2; ::: . The task at the arrival of each example is to compute a
Gaussianposteriorprobability distribution. We denote the param-
eters in thisposteriordistribution byN

�
�p; �p

�
. Computing the

trueposterioris analytically not feasible. We assume the Gaussian
approximation to theposterioris sufficient for our purposes.

2.1. Laplace Approximation

Spiegelhalter and Lauritzen derive an update algorithm for the case
where the prior is Gaussian,i.e. N

�
�p;�p

�
, by making the

Laplace approximation of fitting a quadratic function to the Log
posterior.
The corresponding update equations are

�
�1
p = �

�1 + g(1� g) xn x
t
n

�p = � + (sn � g)�p xn

2.2. Variational Apprximation

The variational approximation idea, Jaakkolaet al. (1996), is to
define a convex function that produces a bound on the likelihood.
This bounding function is defined with a tuning parameter in it. In
an iterative manner, performed in an EM framework, one alternates
between maximisation of the bounding function and setting of the
tuning parameters. This leads to the following update equations

�
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�

The tuning parameter in this variational approximation is defined
in a particular functional form

�(�) = [0:5 � g(�)]=2�

It can be optimised at the arrival of every example by running the
EM algorithm. The update for� is given by

�2 = x
t
�px +

�
x
t
�p

�2



The update equations in these two formulations are very similar, in
particular, it turns out that the weighting for the inverse covariance
updates,g(1�g) and2� (�) only take values between0 and0:25.

2.3. Extended Kalman Filter

Consider the simplified dynamical system given by the following
equations:

�(n+ 1) = �(n) + w(n)

y(n) = f (�(n); x(n)) + v(n)

For simplicity, the evolution of the parameter vector�, is taken
as a random walk model, and we consider a single output case.
Mainstream literature on Kalman filtering is more general than
this, allowing for some known dynamics of the state vector, de-
terministic exogenous inputs etc. We stay with the simple model
for brevity, extending any ideas reported here to the more general
case is straightforward. The process noisew(n) has covariance
matrix Q, and the measurement noise has varianceR, both as-
sumed Gaussian. In general these parameters hold the key to the
success, or failure, of applying the Kalman filtering framework to
any practical problem. In some applications, control for example,
one might have knowledge about these noise processes via addi-
tional measurements. In parameter estimation problems, such as
the one considered here, there are systematic ways of tuning these
noise parameters [6, 3]. We return to this point later.
The update equations for linear output case,i.e. y(n) = �t x +
v(n), consist of the elegant structure of a sequence of prediction
and correction phases given by the following equations.

Prediction
�(njn� 1) = �(n� 1jn� 1)
P (njn� 1) = P (n� 1jn� 1) + Q

Data at Timen fx(n); y(n)g

Error / Innovation e(n) = y(n) � �t(njn� 1) x(n)

Kalman Gain k(n) = P (njn�1) x(n)

fR + xt(n)P (njn�1)x(n)g

Correction
�(njn) = �(njn� 1) + k(n)e(n)
P (njn) = P (njn� 1)

� k(n)xt(n)P (njn� 1)

In the case of a nonlinear model, such as a neural network, we
expand the functionf (:) by Taylor series in the space of the pa-
rameters�, and truncate it. It is common to use only terms upto the
first order, In the options price tracking application [9], I found ex-
tending to the second order is well worth the effort. Many authors
have looked at training a Neural Network in this setting. In doing
this, the dynamical system remains unchanged, and the function
f (:) becomes the neural network. The update equations will have
x replaced by the gradient vector of the outputf�y(n)with respect
to the unknown parameters. This, of course, can be calculated by
error propagation. In work reported in Kadirkamanathan & Niran-
jan [7], we considered a Radial Basis Functions setting. Puskorius
& Feldkamp [11] reports a highly successful application that uses
a large Recurrent Neural Network.
While the material presented so far is all straightforward and at
least a couple of decades old, what makes this framework inter-
esting today is the flexibility it offers to a number of problems ad-
dressed by the Neural Network community, in the Signal Process-

ing context in in particular. These have to do with regularisation
in a sequential (or on-line) setting. When we restrict ourselves to
looking at one example at a time, many of the well known tricks in
training neural networks, such as cross validation to select learn-
ing parameters and model size, or bootstrap to deal with model
uncertainty are no longer available to us.
That a Kalman filter can become handy in this environment can
be seen from a Bayesian derivation of the filter. Recall that we
are interested in propagating a Gaussian density in the parameter
space. At timen, we can write Bayes rule as follows:

p (�(n)jY (n)) =
p (y(n)j�(n)) p (�(n)jY (n� 1))

p (y(n)jY (n� 1))

Here,p (�(n)jY (n)) is theposteriorprobability distribution, hav-
ing seenall the data forn = 1; :::; N .
The denominator term in the above expression is known as thein-
novation probability. A Bayesian way of describing this quantity is
that this represents the only additional piece of information avail-
able in the new data item, having absorbed all knowledge upto that
point in time via the dynamical system as well as integrating out
all uncertainties of the parameters. From a practical perspective,
this term gives us a handle to systematically tune the unknown
noise processes. Jazwinski has derived a number of algorithms
to estimate these noise parameters by maximising the innovation
probability [6]. These are also applicable to the regularisation of
neural networks in a sequential training framework [3] The above
report also describes the similarities to recent Bayesian ideas, or
the so called ‘evidence procedure’, described in [1], Ch. 10.

2.4. Logistic through the EKF

Let us take the logistic regression through the extended Kalman
filter. For the gradient of the logistic outputy(n) with respect to
the parameter vector�, we have

f� = g(1� g)xn

Substituting in the the covariance update equation, we have

P (njn) = P (njn� 1)�
P (njn� 1)f �f

t
�P (njn� 1)

R+ f t
�P (njn� 1)f�

= P (njn� 1)�
P (njn� 1)xxtP (njn� 1)

R= (g(1� g))2 + xtP (njn� 1)x

SettingR = g(1 � g) and applying matrix inversion lemma, we
have

P�1(njn) = P�1(njn� 1) + g(1� g)xxt

Taking this one step further, we can look at what is known as the it-
erated Extended Kalman filter, which allows one to make repeated
local linearisations at the operating point (Bar Shalom & Fortman,
1988). For this we need the following iterations:

�
i+1(njn) = �

i(njn) +
1

R
P if i t

��(n)
�
y(n)� f

�
�
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�
�
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P i(njn) = P (njn� 1)

�
�
R+ f i

�(n)P (njn� 1)f i t
� (n)

��1

f i
�(n)P (njn� 1)



wheref� is the gradient andf�� is the Hessian of the output with
respect to the state vector. The superscripti refers to the iteration.
Taking the logistic model through these equations, and looking
for the fixed points of the state update equation above gives the
following results:

[P (njn)]�1 = [P (njn� 1)]�1 + gi(1� gi)xxt

�(njn) = �(njn� 1) + (y(n)� gi)P (njn� 1)x:

These equations are identical to the update equations derived by
the Laplace approximation. We have arrived at the same update
equations in a roundabout way. What is interesting about this result
is the set of simplifications we had to do along the way. Recall that
we used

� local linearisation of the output equation at the operating
point, and

� set the measurement noise variance tog(1 � g) at every
example.

Obviously, then, there can be situations where we could do better
with a Kalman filtering framework by not making these restric-
tions. For instance we could do a quadratic approximation about
the operating point, or set the noise variance to some other value
to give us greater flexibility.

3. ILLUSTRATIONS

3.1. Synthetic Problem

The first test problem considered here is a simple classification
task in two dimensions, where the two classes were Gaussian dis-
tributed with distinct means and equal covariance matrices. For
this case, we know that the Bayes optimal class boundary is a
straight line and the corresponding posterior probability is a lo-
gistic function. When estimating a logistic model to classify data
from such a problem, we have a perfect match between the opti-
mum solution and the functional form of the model. As one might
expect in such a case, all three algorithms converge to the correct
answer after presentation of a small number of examples. Fig. 3.1
shows the typical behaviour; after the presentation of about25 ex-
amples, the solutions are almost identical.

3.2. Australian Credit Data

This dataset originates from Quinlan [12, 10] and can be obtained
from theSTATLOG project archives1. The problem comes from
a credit card applications domain and the features are a mixture of
continuous and discrete valued variables.
Fig. 3.2 shows the effect of automatically setting the measure-
ment noise variance,R, to maximize the innovation probability
p (y(n)jY (n� 1)). Formulae for these calculations are given in
De Freitaset al. [3]. The test set classification error is plotted as a
function of iteration. We see that, though asymptotically both the
Laplace approximation and the extended Kalman algorithm pro-
duce results similar to the batch solution, the Kalman algorithm
achieves a much smoother convergence. Examples in the training
sequence that are large outliers from what has been seen upto some
point in time, tend to cause sudden jumps in the solution produced
by the Laplace approximation.

1http://blanche.polytechnique.fr/
www.eark/ftp site/ML Repository/statlog
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Figure 1: Class boundaries and posterior probabilities for a
simple two dimensional example

3.3. Medical Risk Prediction

Lovell et al. (1997) describe theQAMC project, which is an at-
tempt to predict the risk of adverse outcome in pregnancy using a
large number of features forming the patient profile. This is a very
large database of750000 different patients. The features constitute
a44 dimensional binary space (some discrete values were quatised
to give a binary representation), with a sparse occupancy;i.e. only
a small subset of the patient profile bins are represented. Using
the area under the Receiver Operating Characteristic (ROC) curve
as an objective measure, Lovellet al. report sequential forward
selection procedure for variable selection [8]. The interesting re-
sult from the study is that the Expected Attainable Discrimination,
defined for this problem, can be very closely approximated by the
Logistic Model. Similar good performance from the logistic on
large medical datasets have been reported by others too.
A comparison of sequentially training a lotistic with the Varia-
tional Approximation scheme and the EKF formulation with au-
tomatically setting the measurement noise varianceR is shown in
Fig. 3. The upper graph is from the EKF, achieving a small but
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Figure 2: Comparing the behaviour of the Laplace approxima-
tion and the extended Kalman filter with measurement noise
varianceR inferred from data. On the Australian credit card
problem, the upper plot shows the classification performance
on the test data at the presentation of each example. The lower
plot shows the estimated value ofR. Note that in a number
of places whereR is increased by the Kalman algorithm are
cases that cause the Laplace approximation to make sudden
jumps. IncreasedR corresponds to not ‘trusting’ the the new
data much, hence smaller update.

consistent win over the variational approach.

4. DISCUSSION

This paper shows that starting from the well known state space for-
mulation one could derive sequential update algorithms for Bayesian
estimation of the logistic regression model. With specific set-
tings in the EKF formulation we achieve algorithms very similar
to two other algorithms in the machien learning literature. Relax-
ing these settings we are able to perform better. Other interesting
topics along these lines include more accurate characterisation of
the probability densities. With nonlinear models one would expect
to have multi modal distributions. Sequential sampling methods to
achieve better representations are currently under study [4].
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