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ABSTRACT

In this paper, the problem of wavelet estimation for ma-
rine seismology is investigated with a bayesian approach
applied to a Bernoulli-Gaussian model. We specify proper
prior distributions for all unknown quantities including the
seismic wavelet, the parameters of the reflectivity sequence
and noise. To solve this estimation problem, an algorithm
close to a stochastic version of the EM algorithm is used.
The random variables are generated iteratively by a simple
Monte-Carlo method namely the Gibbs sampler. But the
direct application of this procedure often leads to a local
minimum of the likelihood function resulting in a shifted
and distorted wavelet. We propose a general method to ob-
tain the true solution which systematycally uses different
shifted wavelets to reinitialize the algorithm. Then we rerun
the procedure on each initialization and retain the wavelet
which minimizes the noise variance.

1. INTRODUCTION

An important preliminary step in linear deconvolution prob-
lems is the estimation of the convolution filter often referred
to as the wavelet in geophysics. As this seismic wavelet
is generally non-minimum phase, its estimation from the
second-order statistics of the observed data fails. Higher or-
der methods have received considerable attention since last
decade, but they often lack robustness because of the small
amount of observation we have [1] [4]. Moreover reflec-
tions at the sea surface induce correlation in the reflectivity
sequence which therefore cannot be considered as white.
This makes all methods based on parametric modelling in-
sufficient. With the well-known EM algorithm, the prob-
lem of model estimation can be viewed in a different man-
ner. Lavielle proposed different stochastic approaches to
solve the problem in a maximum likelihood framework[5].
Recently, Doucet has adopted a bayesian strategy for state-
space estimation in the case of AR signals [2] but does not
take the phase problem into account. We adapt this tech-
nique to seismic signals with an MA representation of the
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source wavelet and apply it to seismic traces.

2. PROBLEM STATEMENT

A seismic trace can be modelled as the convolution of the
unknown wavelet with the reflectivity sequence:

z(n) =
LX
i=0

h(i)r(n � i) + w(n) (1)

wherez, h and r respectively denote the observation, the
wavelet and the reflectivity. The noise will be assumed
white gaussian with variance�2

w
. The order L of the MA

wavelet will be assumed known. The reflectivity obeys a
Bernoulli-Gaussian model:

r(n) � �N (0; �21) + (1� �)N (0; �20): (2)

� is the density of the reflectivity,�21 its variance and�20
is commonly used in geophysics to model the inhomogene-
ity of the medium. At eachr(n) is associated a Bernoulli
indicator variableq(n) with:

P (q(n) = 1) = 1� P (q(n) = 0) = � (3)

and the missing variablesy = (q; r) are introduced. Our
aim is to estimate the parameter vector� = (h; �; �21; �

2
w
)

when just the seismic data are available. As�20 is an artifi-
cial term it will not be estimated but we will choose
�20 = �2�21 with �� 1.

3. THE BAYESIAN APPROACH

In bayesian estimation, the hyperparameter is supposed to
admit a prior densityp(�). When no prior distibution is
available, it is always possible to specify non-informative or
flat prior distributions easy to incorporate. Then the objec-
tive is to estimate the a posteriori joint distributionp(y; �jz)
which can be expressed by Bayes rule:

p(y; �jz) =
p(zjy; �)p(yj�)p(�)

p(z)
(4)



with

p(z) =

Z
p(zjy; �)p(yj�)p(�)dyd�: (5)

This requires integrations that are generally impossible to
perform. To overcome this difficulty we can use Monte-
Carlo methods which estimate a complex distribution by
samples drawn from it. The aim is to build a Markov chain
whose equilibrium distribution coincides with the desired
joint a posteriori distribution of the unknown parameters.

3.1. The Gibbs sampler

The Gibbs sampler is one of the most popular algorithm
used in bayesian estimation. It can be applied when the
variables have conditional distributions that can easily be
sampled from. For the problem we are interested in, the
algorithm proceeds as follows:

1. Initialization: choose arbitrary values
�(0) = (h(0); �(0); �2(0)1 ; �

2(0)
w ) and set k=1.

2. Simulatey from p(yjz; �(k�1)).

3. Simulate�(k) from p(�jz; y).

4. Replace k by k+1 and go to step 2.

3.2. Simulation of the missing variables

The simulation of the missing variables is a difficult prob-
lem because it is impossible in practice to sample directly
from p(r; qjz; �(k�1)). We use a detection-estimation pro-
cedure similar to the one described in [5]:

� Detection: generateq(n) according to
P (q(n) = 1jz; q

�n; r�n).

� Estimation: simulater(n) from p(r(n)jz; r
�n; q).

We will note for any vectorv:

v
�n = [v(1); : : : ; v(n� 1); v(n+ 1); : : : ; v(N )]T :

We adopt a random permutation off1; 2; : : : ; Ng for the
visiting schedule ateach iteration of the Gibbs sampler.

3.3. Simulation of the hyperparameters

We choose conjugate priors classically used in bayesian es-
timation [2] [3] [7]:

h � N (m0;�0) (6)

� � Be(&; � ) (7)

�21 � IG
��1
2
;

1

2

�
(8)

�2
w

� IG
��w

2
;

w

2

�
: (9)

This leads to simple conditional posterior distribution. Let
R(n) = [r(n); : : : ; r(n� L)]T ; then we have:

hjr; z; �2
w
� N (m;�) (10)

where

��1 =
1

�2w

N�LX
n=L+1

R(n)R(n)T + ��10 (11)

and

m = �

"
1

�2
w

N�LX
n=L+1

z(n)R(n)

#
: (12)

The posterior distribution of the noise variance follows:

�2wjz; r; h
(k) � IG

�
�w + N

2
;

w + s2

w

2

�
(13)

with
s2w = kz � h � rk2: (14)

For the variance of the reflectivity we have:

�21jr; q � IG

�
�1 + n1

2
;

1 + s21

2

�
(15)

with

s21 =
NX
n=1

r2(n)q(n): (16)

For the density of the reflectivity:

�jq � Be (& + n1; � +N � n1) (17)

with

n1 =
NX
k=1

q(k): (18)

4. SIMULATION RESULTS

4.1. Synthetic data examples

We start with a simple example of synthetic data where the
reflectivity obeys a white Bernoulli-Gaussian model (Fig-
ure 1). Then we convolve the obtained sequence with the
wavelet depicted in Figure 2 and add noise to generate the
data plotted on Figure 3. The variance of the white gaussian
additive noise is adjusted so that the signal to noise ratio
is equal to 15 dB. We initialize the algorithm with a null
sequence forr andq and a Dirac for the wavelet. In all the
examples given in the article, the missing variables are sam-
pled five times more often than the hyperparameters. Direct
application of the algorithm can result in a bad wavelet es-
timate as shown in Figure 4. The wavelet appears shifted
and distorted. Lavielle analysed this effect as a phase prob-
lem in [6]. The main problem is that the missing variables
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Figure 1: White reflectivity example
.
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Figure 2: Seismic wavelet
.

simulated by the Gibbs sampler are often correlated from
an iteration to another. So the algorithm can be trapped
in local maxima and cannot escape from them in spite of
the stochastic nature of the simulation procedure. Thus the
algorithm is sensitive to the initialization. A simulated an-
nealing version of the EM algorithm has been given in [6]
to alleviate this problem. We adopt a totally different strat-
egy. As there is a phase shift in the wavelet, an idea is to
use different versions of the shifted wavelet to reinitialize
the Gibbs sampler. The procedure is the following:

1. Choose a shifted waveleths.

2. Reinitialize the missing variables and the hypermpa-
rameters by running the Gibbs sampler for several it-
erations without changing the wavelet parameters.

3. Run the complete estimation procedure.

4. Store the hyperparameters that minimize the noise va-
riance estimate.

The second step is useful for a correct initialization of the
missing variables. We have used 20 iterations in step 2 and
then 100 in step 3. The parameters are estimated by av-
eraging the 50 last iterations. As shown in Figure 4, this
procedure greatly improves the results and we obtain a very
satisfactory estimated wavelet.

We now present another example where the reflectivity
is not white anymore. The reflectivity shown in Figure 5 has
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Figure 3: White reflectivity example: noisy seismic data
.
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Figure 4: White reflectivity example: true wavelet (—), es-
timation before (- -) and after (� � �) phase correction

.

been obtained by first generating a Bernoulli-Gaussian vari-
able and then adding pulses to mimic the “ghosts” present
in marine seismic surveys. These “ghosts” are due to reflec-

0 50 100 150 200 250 300 350 400 450 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5: Non-white reflectivity example
.

tion at the sea surface which follow each primary reflection.
They induce correlation in the reflectivity process which
makes the estimation procedure very difficult. In particu-
lar, parametric modelling algorithm are unable to retrieve
the correct seismic wavelet. However, even in this case, our
algorithm gives good results as shown in Figure 6.
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Figure 6: Non-white reflectivity example: true wavelet (–),
estimation before (- -) and after (� � �) phase correction

.

4.2. Simulation on seismic data

We present an application of our algorithm on the Marmousi
dataset. These data are considered as a reference in seis-
mic data processing and inversion problems because they
approach quite well real seismic data. In this model a near
field signature of the source wavelet is given and is the same
as in Figure 2. The seismic trace appears in Figure 7. In this
case our algorithm still improves the estimation of the seis-
mic wavelet (cf Figure 8). In particular, the estimated noise
variance which was�2

w
= 68 without phase correction is

reduced to�2w = 17 when applying our procedure.
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Figure 7: A seismic trace of the Marmousi data
.

5. CONCLUSION

We have presented a powerful algorithm for estimating an
MA signal in the case of a convolution with a Bernoulli-
Gaussian process. The Gibbs sampler was used to simu-
late both the missing variables and the model parameters.
However we have shown that the algorithm hardly escaped
from local maxima of the likelihood function. As those lo-
cal maxima were generally shifted and distorted versions of
the true wavelet, we have decided to carefully reinitialize
the estimation procedure by different phase shiftings. The
retained solution is the one that minimizes the noise vari-
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Figure 8: Marmousi data: true wavelet (—), estimation be-
fore (- -) and after (� � �) phase correction

.

ance estimate. This method has been applied to synthetic
data as well as to more realistic seismic data and has exhib-
ited satisfactory behavior.
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