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ABSTRACT the general theory of model selection with the bootstrap based on
L residuals and explain why the methods are attractive. We give sev-

The problem .Of model selection is addressed. Bootstrap methc’dseral examples and compare the results with those based on classi-
based on residuals are used to select the best model according o techniques.
a prediction criterion. Both the linear and the nonlinear models
are treated. It is shown that bootstrap methods are consistent and
in simulations that in most cases they outperform classical tech- 2. MODEL SELECTION
nigues such as Akaike’s information criterion and Rissanen’s min-

, . .
imum description length. We also show how the methods apply to L€t¥ = (%0, - - - ,yn—1)" be observations of a set of random vari-

dependent data models such as autoregressive models. ablesY = (Yo,...,Yn-1)'. Based on the observationswe
have a choice amongparameter dependent mod@i, ... , M,.
The objective of model selection is to choose the model which best
o . . Assume that a modeM is specified by a probability density
Model selection is a fundamental problem in many areas of signal fnction fv (y]@) of Y with @ = (6,,...,6,) being a param-

processing, including system identification [5], radar [8] and sonar gier to pe estimated based gn Provided the probability den-
[12]. Among signal processing practitioners, two approaches for gty fynction of the data is known, one may use the method of
model selection have gained popularity and are widely used [7]. maximum likelihood. An intuitive solution to the model selec-
These are Akaike’s Information Criterion (AIC) [1] and Rissanen’s  tjon problem may be as follows: Givem, ..., M,, find for

Minimum Description Length [9]. Although there exist many model gacha, the corresponding maximum value of the log-likelihood
selection procedures, the development of new techniques that outsq, . — 1,...,q. A naive approach would then be to choose
perform the popular ones is still growing and continues to grow ne model corresponding to the largest value with respedt to
(see for example the recently developed methods based on the genyowever, it is known that this approach fails because it tends to
eralised Kullback-Leibler information [11]). pick the model with the largest number of parameters [9]. This is
The objective of this paper is to introduce methods for model 5 proplematic statistical solution as it contradicts the principle of
selection based on the bootstrap in a signal processing frameworkparsimony. A modification of the log-likelihood function such that
Besides the good statistical properties of bootstrap selection proce«narsimonious” models are favoured while “generous” models are
dures there are other reasons for the use of the bootstrap for modeenalised is a compromise. For example, Akaike’s information
selection. _ _ _ ) _ criterion penalises a model wih parameters by subtracting the
_ The bootstrap is a powerful tool in that it requires very litle  nymber of parameteysfrom the maximising log-likelihood func-
in the way of modelling, assumptions, or analysis, and it can be tion, Many other criteria are based on a similar principle. They in-
applied in an automatic way When_only a small set of (_jat_a is avail- ¢|ude Rissanen’s MDL [9] and Hannan and Quinn’s criterion [4].
able and standard methods that invoke the central limit theoremThe statistical properties of these criteria have been well studied.
are inapplicable. o _ _ _ In our study, we focus on bootstrap methods. With little as-
~ Usually, model selection is associated with parameter estima-symptions, these are shown to be consistent. In an extensive simu-
tlon_and inference SUCh_aS variance or mean_squar_ed error e_St'Tation study, we also show that in most cases they outperform most
mation of parameter estimators and hypothesis testing (e.g., sigpopular techniques. We first consider the simplest linear model

nal detection). Inference based on the bootstrap has proved to beng then extend the study to nonlinear models. We also demon-
asymptotically more accurate than methods based on the Gausgyrate their performance in autoregressions.

sian assumption. Therefore, it is preferable to use the bootstrap
for both, model selection and subsequent inference applied to the
selected model. This does not involve extra cost because the ob- 3. MODEL SELECTION IN LINEAR MODELS
servatlon_s generated by the bootstrap for model selection can beConsi der the linear model
used for inference.

Bootstrap model selection is not limited to linear models but Y, =zb+ Z, t=0,...,n—1, 1)
can be extended to more complicated models.

Some methods for model selection in signal processing basedwhereZ; is a noise sequence of identically and independently dis-
on the bootstrap have been reported in [2, 14]. Here we presenttributed (iid) random variables of unknown distribution with mean



zero and variance. The iid case is considered here for the sake {1,...,p}. Bootstrap resampleg can be generated by resam-
of simplicity, but the methods presented can be extended to thepling with replacement frongz, — 2.)/4/1 — p/n (the inclusion
case wheréZ; is a correlated process. A discussion on this willbe of the divider /T — p/n is for the purpose of bias correction),
provided in Section 4. In (1} is an unknowrp-vector parameter and computingy; = by + 25t = 0 n — 1. where
andx; is thet-th value of thep vector of explanatory variables. 1 —no1 t Cad £ ey '

The outputY; is sometimes called the responseraiThe vector ~ #* =" D=0 2t _ i

x: can be assumed to be random. This will affect the resampling . A refined bootstrap approach for estimat&d'» (0)] first es-
schemes discussed below. For simplicity, we omit a random timates the bias i, (3) as an estimator pf the_ true pre_dlctlon
and will only consider the case whesg is fixed. A comprehen- error and then (_:orrecB,L (8) by subtracting its es_tlnjated bias [3]. .
sive treatment of model selection procedures wieiis random Tht_e average difference between the true pre(j|c_t|on error and its
can be found, for example, in [10]. estimate over data sets called the average optimism [3], can be

Model (1) can be re-written as estimated by the bootstrap, yielding

e = E[Yi|e] =a,b,  var[Vilz:] = o5, én(B) = E. ly — @sbl>  lly” — websl*| _ 26%ps
n n n
fort =0,...,n— 1, and in vector formY” = b + Z, where
Y = (Yo,...,Y,-1)', the matrixe = (xo, ..., 2n—1) is full The final estimate dE[T", (3)] is then given by
rank,b = (b1,... ,bp,) andZ = (Zo, ... , Zn-1)". A
Let 3 be a subset of1, ... ,p}, bg be a sub-vector db con- £.(8) = lly — zsbgl? N 26%pp
taining the components @f indexed by integers i, and letzg AT n n

be a matrix containing the columns sfindexed by integers if3.

. . Evaluation of the previous expression leads to
Then, a model corresponding fois P P

2 2
. z I—-h
Y = aybs 4 2. @ fag = L M=l
Let 3 represent a model from now on. Define the optimal model _ lhsz]? N 22'(I — hg)p 4 26%ps
as the modeB, such thabgs, contains all non-zero components of n n n
b only. The problem of model selection is to estimétebased on ; . o :

. . Und Id larit dit 10] for details),
the datayo, . .. , y»—1. Our treatment will be based on an estima- nder some mild regularity conditions (see [10] for details)
tor of the mean-squared prediction erkfYy,, — m’f,tb)z, where fn(ﬂ) = E[T(8)] + 0p(1) (5)
a:},tf) is the prediction of the future responsg; at a givenz ;. d
For model this estimator is given by an

3 I=l” | 20%ps _ |lhsz]? -1
= b2 In () = + - +op(n7t)
1 A\ 2 Y —xz3b P
r.(8) = ~ Z (Yt - mfmbﬁ) = % 3) n n n
t=0 for an incorrect and a correct model, respectively (a model is in-

. - correct if # ab). This result indicates that the model selection

wherexy, is thet-th row ofz 5 and||al| = va'a for any vector  5cedure based on minimisirig, (3) over 3 is inconsistent in

a. One can show that the expected value of (3), taken with respecty -ijim P{3 = Bo} < 1, unless3 = {1 p}is the only
n— 00 - ’ - 3ty

to Yz, is equivalent to correct model. A consistent model selection procedure is obtained

2 if we replaceé,, (3) by é,.(8) wherem is chosen such that, with
E[Cn(8)] = 0% — UZTPB + An(B), hse = @y, (xhwp) @t
wherepg is the size ofbg, A, (8) = n~ '/ (I — hg)u, with 50 and = max hgt — 0
p=E[Y]= (po,...,pn—1) andI andhg = zg(zhzs) 'z n m i<n
being thep x p identity and projection matrix, respectively.dfis for all 8 in the class of models to be selected. Then,
a correct model in thalig contains all non-zero componentstof ) s
such that for anye, b = 3bs, thenA,,(3) is identical zero. From(B) = =l ozps | (m=)
An estimate ofE[I',(3)] minimised overs will lead to an ’ n m P

optimal model. This principle is also used in AIC, for example.

With the bootstrap, we would consider the estimate when 5 is a correct model, otherwise,,(6) is as in Eq. (5).

These results suggest that we estinEe, . (3)] through

n—1 2%
o 1 ;pe\? ly — =sbs]l AT
Lu(8) ==Y E. (g —@ishy) =E. . @ .. — zbjm
(,H) n pa; (yt mtﬂ B) n ( ) r (/3) — E* |:||y B || :| 7 (6)

n,m
n

whereE. denotes expectation operation with respect to bootstrap A N . .
. PO . Where bg ,,, is the bootstrap analog df obtained fromy; =
sampling [3],b; is the bootstrap analog of the least-squares esti- . ’

/ Ak _ _ Ak
matebg, calculated in the same mannertas but with (y; , z¢) Taibs + 20,8 =0, 'A’" R 1, where; denotes the boot_strap
replacing(y:, zs:). To obtain observationg;, ¢t =0,... ,n — 1, resample from/n/m(2; —Z4)//1 — p/n. To evaluate the ideal
we use the following bootstrap method based on residuals. expression in (6), we use Monte Carlo approx(l_r;watlons, in which
Let b be the least-squares estimateboéind define the-th we repeat the resampling staBdimes to obtairb;s ,,, and’;'},.(3),

residual bys, = y; — @b, t = 0,...,n — 1, wherea = and averagé’; ") (3) overi = 1,... , B.



N(0,1) t3
Model 8 r~ AIC MDL (| I AIC MDL
(0,0, b2,b3) 100 91 98 99 89 98
(0,b1,b2,b3) 0 5 1 1 5 1
(bo, 0, b2, b3) 0 3 1 0 3 1
(bo, b1, b2, b3) 0 2 0 0 3 0

Table 1: Estimates of the empirical probabilities (in percent) on
selecting models for a trend with = (0,0, 0.035, —0.0005)’,
embedded in Gaussian ahgddistributed noisep = 64, m = 2.

3.1. Example: Trend Estimation

We give a simple example where we estimate the model for a trend
in a stationary iid process of unknown distribution. Dét =
b+ Zyt =0,...,n — 1 wherex; = (1,t,...,t"), t
0,...,n—1, bis the vector of polynomial coefficients chosen to
beb = (0,0,0.035, —0.0005)" andn = 64. We simulateY; by
adding Gaussian ang-distributed noise of variance of 1 and 3,
respectively.

The bootstrap procedure was run usiBg= 100 andm = 2.
The minimiser off“;,m(ﬂ) was selected as the optimal model.
Table 1 shows the empirical probabilities (based on 1,000 simu-
lations) on selecting some models (models not shown were not
selected by any of the methods). Clearly, in this example the boot-
strap outperforms the AIC and the MDL criterion.

4. MODEL SELECTION IN NONLINEAR MODELS

Step 1. Withy¢,t =0, ... ,n — 1, find ba, the solution of

-

n

(Yt — 9gat(7)) 9o () =0,
t=0
forally € Bwitha = {1,...,p}.
Step 2. Compute the residuals, = y; — gat(bs) for t =

0,...

Step 3. GetZ;,t =0,...,n — 1, iid samples from the empirt
ical distribution putting mass~" on each

vn/m(Z: — 2.)/\/1 — p/n,

Step 4. Computeby ,,, = bg +m(bs)~"

,n—1.

t=0,...,n—1.

Zt =0 Ztht(bﬁ)

Step 5. Repeat steps 3-4 a large number of times to ob
ax(i) .
bﬂ mi b = 1 B

Step 6. Compute

ain

~x(1)

— 9Bt (bﬁ m)

n

n—1

B2 2

i=1t

(v )

’1>

Step 7. Minimise I, .. (3) over to find 3.

Table 2: Bootstrap procedure for model selection in nonlinear re-
gression.

The principles discussed in the previous section are easily extendible

to nonlinear models. We define a nonlinear model by

Y,f:g($t,b)+Zt, t

0,...,n—1, @)
whereZ; is a noise sequence of iid random variables of unknown
distribution with mean zero and varianeg. The model in (7) can
also be written as

pe = EYila] = gla,b),  varile] = o3,
fort =0,...,n — 1. Herein,g is a known function. LeB3 be a
collection of subsets dfl, . .. , p}, and letgg: (bg) = gs(x s, bg),
wherej € B andgg is the restriction of the functiop to the ad-
missible set ofz ¢, bg). Let B be the admissible set fér.

A consistent bootstrap procedure for selecfitig given in Ta-
ble 2, whergy(v) = 2422 andm (v) = 31— 95:(7)95.(7)"

The proof for consistency of this procedure requires more reg-
ularity conditions than the one in section 3. Specifically, condi-
tions for the asymptotic normality dfg and its bootstrap analog
are needed [10]. The performance of this method is highlighted in
an example.

4.1. Example: Oscillations in noise

Consider the modelos w1t(1 + coswat) + Z, t € Z, In this case
B = {8,k =1,2,3}. Then, forexampleys,:(bs, ) = 2 cosw:t
(w2 = 0), gg,t(bs,) = 1 + coswst (w1 = 0), andgg,:(bs,) =
coswit(l 4+ coswat) (wi,ws # 0). We run simulations at -1.2 dB
signal-to-noise power ratio with = 40 andm = 35. The fre-
quencies were selected to bg = 0.27 andws = 0.1w. The

empirical probabilities (based on 100 simulations) are given in Ta-
ble 3. It appears that in this example all three methods perform
equally well. Similar results were obtained under different condi-

tions and parameter settings.

Method ﬁl ,82 ﬂg
Boot 3 0 97
AlC 0 3 97
MDL 0 5 95

Table 3: Probabilities (in percent) of selecting the true model.

In Sections 3 and 4, we considered the case where the errors
are iid. However, the methods can be extended to the correlated
case. For this, we could use an alternative resampling scheme such
as the method adub-samplinglescribed in [6], which works well
for a coloured noise sequence. An alternative would be to model
the coloured noise sequence as an autoregressive process, for ex-
ample. Then, the residuals of the autoregressive process could
be used for resampling. Resampling autoregressive processes for
model selection is discussed below.

Choice ofm. The methods described in this Sections 3 and 4 re-
quire the choice of the parameter with the consistency proper-
ties indicated in the sections. An optimalmay depend on model
parameters and thus may be difficult or even impossible to deter-
mine. One guideline for choosing is such thap/m should be
reasonably small.



5. ORDER SELECTION IN AUTOREGRESSIVE Method | B=1 B=2 p=3 p=4
MODELS Boot 28.0 65.0 5.0 2.0

AIC 17.8 62.4 12.6 7.2

The methods discussed above can be generalised to linear pro- MDL 43.2 54.6 2.1 0.1

cesses. Here, we consider model selection of an autoregressive

process. Consider . o )
Table 5: Empirical Probabilities (in percent) of selecting the true

Yi =b1Yio1 +b2Yieo+ - bpYiep + Zy, tEZ, AR model,p = 2. n = 128 andm = 40.
wherep is the orderpi, k = 1,... ,p, are unknown parameters
andZ; are iid random variables with mean zero and variange
Let(y—p,.-- ,¥—-1,%o0,--- ,Yn—1) be observations and collect the 6. CONCLUSIONS
parameters into a vectbrwhose least squares estimatobis We have discussed model selection techniques based on bootstrap

_ Aresampling procedure for estimating the variance of the es- resjguals. We have considered linear, nonlinear models as well as
timator of the parameter of an AR(1) process has been describedytoregressions. The methods are based on a predictive measure
in [13]. The principle can be used here in a similar fashion to es- \yhich is estimated by the bootstrap. The methods are shown to

timate the order of an AR process. We thus select a médeim be consistent when the residuals are scaled appropriately. The ex-
B = {1,...,p} andeach/ corresponds to the autoregressive amples described show that the techniques outperform Akaike’s
model of order3, i.e.,Y: = b1Y;—1 +b2Yi 2+ bgYip + Z:. information criterion and Rissanen’s minimum description length.

The optimal order igy = max{k : 1 < k < p,br # 0}, wherep

is the largest order. The bootstrap approach is described in Table 4.
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