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ABSTRACT

The problem of model selection is addressed. Bootstrap methods
based on residuals are used to select the best model according to
a prediction criterion. Both the linear and the nonlinear models
are treated. It is shown that bootstrap methods are consistent and
in simulations that in most cases they outperform classical tech-
niques such as Akaike’s information criterion and Rissanen’s min-
imum description length. We also show how the methods apply to
dependent data models such as autoregressive models.

1. INTRODUCTION

Model selection is a fundamental problem in many areas of signal
processing, including system identification [5], radar [8] and sonar
[12]. Among signal processing practitioners, two approaches for
model selection have gained popularity and are widely used [7].
These are Akaike’s Information Criterion (AIC) [1] and Rissanen’s
Minimum Description Length [9]. Although there exist many model
selection procedures, the development of new techniques that out-
perform the popular ones is still growing and continues to grow
(see for example the recently developed methods based on the gen-
eralised Kullback-Leibler information [11]).

The objective of this paper is to introduce methods for model
selection based on the bootstrap in a signal processing framework.
Besides the good statistical properties of bootstrap selection proce-
dures there are other reasons for the use of the bootstrap for model
selection.

The bootstrap is a powerful tool in that it requires very little
in the way of modelling, assumptions, or analysis, and it can be
applied in an automatic way when only a small set of data is avail-
able and standard methods that invoke the central limit theorem
are inapplicable.

Usually, model selection is associated with parameter estima-
tion and inference such as variance or mean squared error esti-
mation of parameter estimators and hypothesis testing (e.g., sig-
nal detection). Inference based on the bootstrap has proved to be
asymptotically more accurate than methods based on the Gaus-
sian assumption. Therefore, it is preferable to use the bootstrap
for both, model selection and subsequent inference applied to the
selected model. This does not involve extra cost because the ob-
servations generated by the bootstrap for model selection can be
used for inference.

Bootstrap model selection is not limited to linear models but
can be extended to more complicated models.

Some methods for model selection in signal processing based
on the bootstrap have been reported in [2, 14]. Here we present

the general theory of model selection with the bootstrap based on
residuals and explain why the methods are attractive. We give sev-
eral examples and compare the results with those based on classi-
cal techniques.

2. MODEL SELECTION

Let y = (y0; : : : ; yn�1)
0 be observations of a set of random vari-

ablesY = (Y0; : : : ; Yn�1)
0. Based on the observationsy we

have a choice amongq parameter dependent modelsM1; : : : ;Mq.
The objective of model selection is to choose the model which best
explains the datay.

Assume that a modelM is specified by a probability density
function fY (yj�) of Y with � = (�1; : : : ; �p)

0 being a param-
eter to be estimated based ony. Provided the probability den-
sity function of the data is known, one may use the method of
maximum likelihood. An intuitive solution to the model selec-
tion problem may be as follows: GivenM1; : : : ;Mq, find for
eachMk the corresponding maximum value of the log-likelihood
for k = 1; : : : ; q. A naive approach would then be to choose
the model corresponding to the largest value with respect tok.
However, it is known that this approach fails because it tends to
pick the model with the largest number of parameters [9]. This is
a problematic statistical solution as it contradicts the principle of
parsimony. A modification of the log-likelihood function such that
“parsimonious” models are favoured while “generous” models are
penalised is a compromise. For example, Akaike’s information
criterion penalises a model withp parameters by subtracting the
number of parametersp from the maximising log-likelihood func-
tion. Many other criteria are based on a similar principle. They in-
clude Rissanen’s MDL [9] and Hannan and Quinn’s criterion [4].
The statistical properties of these criteria have been well studied.

In our study, we focus on bootstrap methods. With little as-
sumptions, these are shown to be consistent. In an extensive simu-
lation study, we also show that in most cases they outperform most
popular techniques. We first consider the simplest linear model
and then extend the study to nonlinear models. We also demon-
strate their performance in autoregressions.

3. MODEL SELECTION IN LINEAR MODELS

Consider the linear model

Yt = x
0
tb+ Zt; t = 0; : : : ; n� 1; (1)

whereZt is a noise sequence of identically and independently dis-
tributed (iid) random variables of unknown distribution with mean



zero and variance�2Z . The iid case is considered here for the sake
of simplicity, but the methods presented can be extended to the
case whereZt is a correlated process. A discussion on this will be
provided in Section 4. In (1),b is an unknownp-vector parameter
andxt is thet-th value of thep vector of explanatory variables.
The outputYt is sometimes called the response atxt.The vector
xt can be assumed to be random. This will affect the resampling
schemes discussed below. For simplicity, we omit a randomxt
and will only consider the case wherext is fixed. A comprehen-
sive treatment of model selection procedures whenxt is random
can be found, for example, in [10].

Model (1) can be re-written as

�t = E[Ytjxt] = x
0
tb; var[Ytjxt] = �2Z ;

for t = 0; : : : ; n � 1; and in vector formY = xb + Z, where
Y = (Y0; : : : ; Yn�1)

0, the matrixx = (x0; : : : ;xn�1)
0 is full

rank,b = (b1; : : : ; bp)
0 andZ = (Z0; : : : ; Zn�1)

0.
Let � be a subset off1; : : : ; pg, b� be a sub-vector ofb con-

taining the components ofb indexed by integers in�, and letx�
be a matrix containing the columns ofx indexed by integers in�.
Then, a model corresponding to� is

Y = x�b� +Z: (2)

Let � represent a model from now on. Define the optimal model
as the model�o such thatb�o contains all non-zero components of
b only. The problem of model selection is to estimate�o based on
the datay0; : : : ; yn�1. Our treatment will be based on an estima-
tor of the mean-squared prediction errorE(Yf;t � x0f;tb̂)

2, where

x0f;tb̂ is the prediction of the future responseYf;t at a givenxf;t.
For model� this estimator is given by

�n(�) =
1

n

n�1X
t=0

�
Yt � x

0
�tb̂�

�2
=
kY � x�b̂�k2

n
(3)

wherex0�t is thet-th row ofx� andkak =
p
a0a for any vector

a. One can show that the expected value of (3), taken with respect
to Yt, is equivalent to

E[�n(�)] = �2Z � �2Zp�
n

+�n(�);

wherep� is the size ofb� , �n(�) = n�1�0(I � h�)�, with
� = E[Y ] = (�0; : : : ; �n�1)

0 andI andh� = x�(x
0
�x�)

�1x0�
being thep� p identity and projection matrix, respectively. If� is
a correct model in thatb� contains all non-zero components ofb
such that for anyx, xb = x�b�, then�n(�) is identical zero.

An estimate ofE[�n(�)] minimised over� will lead to an
optimal model. This principle is also used in AIC, for example.
With the bootstrap, we would consider the estimate

~�n(�) =
1

n

n�1X
t=0

E�
�
yt � x

0
t�b̂

�

�

�2
= E�

ky � x� b̂
�

�k2
n

; (4)

whereE� denotes expectation operation with respect to bootstrap
sampling [3],b̂

�

� is the bootstrap analog of the least-squares esti-
mateb̂� , calculated in the same manner asb̂�, but with(y�t ;x�t)
replacing(yt;x�t). To obtain observationsy�t , t = 0; : : : ; n � 1,
we use the following bootstrap method based on residuals.

Let b̂ be the least-squares estimate ofb and define thet-th
residual byẑt = yt � x0�tb̂�, t = 0; : : : ; n � 1, where� =

f1; : : : ; pg. Bootstrap resampleŝz�t can be generated by resam-
pling with replacement from(ẑt � ẑ�)=

p
1� p=n (the inclusion

of the divider
p

1� p=n is for the purpose of bias correction),
and computingy�t = x0�tb̂� + ẑ�t , t = 0; : : : ; n � 1, where
ẑ� = n�1

Pn�1
t=0 ẑt.

A refined bootstrap approach for estimatingE[�n(�)] first es-
timates the bias in�n(�) as an estimator of the true prediction
error and then corrects�n(�) by subtracting its estimated bias [3].
The average difference between the true prediction error and its
estimate over data setsx, called the average optimism [3], can be
estimated by the bootstrap, yielding

ên(�) = E�

"
ky � x�b̂

�

�k2
n

� ky� � x� b̂
�

�k2
n

#
=

2�̂2Zp�
n

The final estimate ofE[�n(�)] is then given by

�̂n(�) =
ky � x� b̂�k2

n
+

2�̂2Zp�
n

Evaluation of the previous expression leads to

�̂n(�) =
kzk2
n

+
k(I � h�)�k2

n

� kh�zk2
n

+
2z0(I � h�)�

n
+

2�̂2Zp�
n

:

Under some mild regularity conditions (see [10] for details),

�̂n(�) = E[�n(�)] + op(1) (5)

and

�̂n(�) =
kzk2
n

+
2�2Zp�

n
� kh�zk2

n
+ op(n

�1)

for an incorrect and a correct model, respectively (a model is in-
correct if� 6= xb). This result indicates that the model selection
procedure based on minimisinĝ�n(�) over � is inconsistent in
that limn!1 Pf�̂ = �0g < 1, unless� = f1; : : : ; pg is the only
correct model. A consistent model selection procedure is obtained
if we replaceên(�) by êm(�) wherem is chosen such that, with
h�t = x0�t(x

0
�x�)

�1x�t,

m

n
! 0 and

n

m
max
t�n

h�t ! 0

for all � in the class of models to be selected. Then,

�̂n;m(�) =
kzk2
n

+
�2Zp�
m

+ op(m
�1)

when� is a correct model, otherwisê�n;m(�) is as in Eq. (5).
These results suggest that we estimateE[�n;m(�)] through

�̂�n;m(�) = E�

"
ky � xb̂

�

�;mk2
n

#
; (6)

where b̂
�

�;m is the bootstrap analog of̂b obtained fromy�t =

x0�tb̂� + ẑ�t , t = 0; : : : ; n � 1, whereẑ�t denotes the bootstrap
resample from

p
n=m(ẑt� ẑ�)=

p
1 � p=n. To evaluate the ideal

expression in (6), we use Monte Carlo approximations, in which

we repeat the resampling stageB times to obtain̂b
�(i)

�;m and�̂�(i)n;m(�),

and averagê��(i)n;m(�) overi = 1; : : : ; B.



N (0; 1) t3
Model� �̂� AIC MDL �̂� AIC MDL
(0; 0; b2; b3) 100 91 98 99 89 98
(0; b1; b2; b3) 0 5 1 1 5 1
(b0; 0; b2; b3) 0 3 1 0 3 1
(b0; b1; b2; b3) 0 2 0 0 3 0

Table 1: Estimates of the empirical probabilities (in percent) on
selecting models for a trend withb = (0; 0; 0:035;�0:0005)0 ,
embedded in Gaussian andt3 distributed noise,n = 64, m = 2.

3.1. Example: Trend Estimation

We give a simple example where we estimate the model for a trend
in a stationary iid process of unknown distribution. LetYt =
x0tb + Zt, t = 0; : : : ; n � 1 wherext = (1; t; : : : ; tp), t =
0; : : : ; n � 1, b is the vector of polynomial coefficients chosen to
beb = (0; 0; 0:035;�0:0005)0 andn = 64. We simulateYt by
adding Gaussian andt3-distributed noise of variance of 1 and 3,
respectively.

The bootstrap procedure was run usingB = 100 andm = 2.
The minimiser of�̂�n;m(�) was selected as the optimal model.
Table 1 shows the empirical probabilities (based on 1,000 simu-
lations) on selecting some models (models not shown were not
selected by any of the methods). Clearly, in this example the boot-
strap outperforms the AIC and the MDL criterion.

4. MODEL SELECTION IN NONLINEAR MODELS

The principles discussed in the previous section are easily extendible
to nonlinear models. We define a nonlinear model by

Yt = g(xt; b) + Zt; t = 0; : : : ; n� 1; (7)

whereZt is a noise sequence of iid random variables of unknown
distribution with mean zero and variance�2Z . The model in (7) can
also be written as

�t = E[Ytjxt] = g(xt; b); var[Ytjxt] = �2Z ;

for t = 0; : : : ; n � 1. Herein,g is a known function. LetB be a
collection of subsets off1; : : : ; pg, and letg�t(b�) = g�(x�t; b�),
where� 2 B andg� is the restriction of the functiong to the ad-
missible set of(x�t; b�). Let ~B be the admissible set forb.

A consistent bootstrap procedure for selecting� is given in Ta-
ble 2, where_g(
) = @g(
)

@

andm�(
) =

Pn�1
t=0 _g�t(
) _g�t(
)

0.
The proof for consistency of this procedure requires more reg-

ularity conditions than the one in section 3. Specifically, condi-
tions for the asymptotic normality of̂b� and its bootstrap analog
are needed [10]. The performance of this method is highlighted in
an example.

4.1. Example: Oscillations in noise

Consider the modelcos!1t(1+cos!2t)+Zt, t 2 Z; In this case
B = f�k; k = 1; 2; 3g. Then, for example,g�1t(b�1) = 2 cos!1t
(!2 = 0), g�2t(b�2) = 1 + cos!2t (!1 = 0), andg�3t(b�3) =
cos!1t(1+cos!2t) (!1; !2 6= 0). We run simulations at -1.2 dB
signal-to-noise power ratio withn = 40 andm = 35. The fre-
quencies were selected to be!1 = 0:2� and!2 = 0:1�. The

Step 1. With yt, t = 0; : : : ; n� 1, find b̂�, the solution of

n�1X
t=0

(yt � g�t(
)) _g�t(
) = 0;

for all 
 2 ~B with � = f1; : : : ; pg.
Step 2. Compute the residualŝzt = yt � g�t(b̂�) for t =

0; : : : ; n� 1.

Step 3. Get ẑ�t , t = 0; : : : ; n� 1, iid samples from the empir-
ical distribution putting massn�1 on eachp

n=m(ẑt � ẑ�)=
p

1 � p=n; t = 0; : : : ; n� 1:

Step 4. Computêb
�

�;m = b̂� +m�(b̂�)
�1
Pn�1

t=0 ẑ�t _g�t(b̂�).

Step 5. Repeat steps 3-4 a large number of times to obtain

b̂
�(i)

�;m, i = 1; : : : ; B.

Step 6. Compute

�̂�n;m(�) = B�1
BX
i=1

n�1X
t=0

�
yt � g�t(b̂

�(i)

�;m)
�2

n
:

Step 7. Minimise �̂�n;m(�) over� to find �̂.

Table 2: Bootstrap procedure for model selection in nonlinear re-
gression.

empirical probabilities (based on 100 simulations) are given in Ta-
ble 3. It appears that in this example all three methods perform
equally well. Similar results were obtained under different condi-
tions and parameter settings.

Method �1 �2 �3
Boot 3 0 97
AIC 0 3 97
MDL 0 5 95

Table 3: Probabilities (in percent) of selecting the true model.

In Sections 3 and 4, we considered the case where the errors
are iid. However, the methods can be extended to the correlated
case. For this, we could use an alternative resampling scheme such
as the method ofsub-samplingdescribed in [6], which works well
for a coloured noise sequence. An alternative would be to model
the coloured noise sequence as an autoregressive process, for ex-
ample. Then, the residuals of the autoregressive process could
be used for resampling. Resampling autoregressive processes for
model selection is discussed below.

Choice ofm. The methods described in this Sections 3 and 4 re-
quire the choice of the parameterm with the consistency proper-
ties indicated in the sections. An optimalm may depend on model
parameters and thus may be difficult or even impossible to deter-
mine. One guideline for choosingm is such thatp=m should be
reasonably small.



5. ORDER SELECTION IN AUTOREGRESSIVE
MODELS

The methods discussed above can be generalised to linear pro-
cesses. Here, we consider model selection of an autoregressive
process. Consider

Yt = b1Yt�1 + b2Yt�2 + � � � bpYt�p + Zt; t 2 Z;
wherep is the order,bk, k = 1; : : : ; p, are unknown parameters
andZt are iid random variables with mean zero and variance�2Z .
Let (y�p; : : : ; y�1; y0; : : : ; yn�1) be observations and collect the
parameters into a vectorb whose least squares estimator isb̂.

A resampling procedure for estimating the variance of the es-
timator of the parameter of an AR(1) process has been described
in [13]. The principle can be used here in a similar fashion to es-
timate the order of an AR process. We thus select a model� from
B = f1; : : : ; pg and each� corresponds to the autoregressive
model of order�, i.e.,Yt = b1Yt�1+ b2Yt�2+ � � � b�Yt�� +Zt.
The optimal order is�0 = max fk : 1 � k � p; bk 6= 0g, wherep
is the largest order. The bootstrap approach is described in Table 4.

Step 1. Resample the residuals(ẑt � ẑ�) to obtainẑ�t .

Step 2. Find b̂
�

�;m the least-squares estimate ofb� under�
from y�t =

P�
k=1 b̂ky

�
t�k + ẑ�t for t = �p; : : : ; m� 1;

with m replacingn and where the initial bootstrap ob-
servations

�
y��2p; : : : ; y

�
�p�1

	
are chosen to be equal

to
�
y��p; : : : ; y

�
0

	
.

Step 3. Repeat steps 1-2 to obtain̂b
�(1)

�;m; : : : ; b̂
�(B)

�;m and

�̂�n;m(�) = B�1
BX
i=1

n�1X
t=0

�
yt �P�

k=1 yt�k+1b̂
�(i)
k;m

�2
n

Step 5. Minimise �̂�n;m(�) over� to find �̂.

Table 4: Procedure for order selection in an AR model.

The procedure described in Table 4 is consistent in thatPf�̂ =
�0g ! 1 asn!1, providedm satisfiesm!1 andm=n! 0
asn ! 1. The proof requires stability of the recursive filter
and Cram´er’s condition. Details can be found in [10]. Note that
in Section 3 and 4m was a scalor of the residuals while here it
determines the size of the data used for the bootstrap estimates.

5.1. Example: Order Selection in an AR Model

In this example, we consider the problem of determining the order
of the process described by

Yt = �0:4Yt�1 + 0:2Yt�2 + Zt; t 2 Z;
whereZt is a standard Gaussian variable. A number ofn = 128
observations was considered. Results of the procedure described
in Table 4 as well as a comparison with AIC and the MDL criterion
are given in Table 5.

Similar results were obtained with different constellations and
noise types. In the simulations we run the choice ofm does not
appear to have an effect on the results, as long as it satisfies the
condition given above.

Method � = 1 � = 2 � = 3 � = 4
Boot 28.0 65.0 5.0 2.0
AIC 17.8 62.4 12.6 7.2
MDL 43.2 54.6 2.1 0.1

Table 5: Empirical Probabilities (in percent) of selecting the true
AR model,p = 2. n = 128 andm = 40.

6. CONCLUSIONS

We have discussed model selection techniques based on bootstrap
residuals. We have considered linear, nonlinear models as well as
autoregressions. The methods are based on a predictive measure
which is estimated by the bootstrap. The methods are shown to
be consistent when the residuals are scaled appropriately. The ex-
amples described show that the techniques outperform Akaike’s
information criterion and Rissanen’s minimum description length.
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