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ABSTRACT

Recently the G distribution has been proposed as a new
model for extremely heterogeneous clutter in SAR returns.
In this paper, we develop a technique for estimating the pa-
rameters of the G distribution, show that the G distribution
represents an amplitude distribution of a spherically invari-
ant random process for certain values of its parameters, and
design coherent detectors for known and unknown signals
embedded in G-distributed clutter. The performance of the
detectors under specific conditions is then provided.

1. INTRODUCTION

In high resolution radars the clutter can no longer be gener-
alised by the central limit theorem to have Gaussian statis-
tics. Such non-Gaussian clutter returns would be passed by
the detectors as being targets and hence lead to unacceptable
levels of false alarm. In addition to this problem of non-
optimal performance of the detectors, it was realised that if
the clutter was non-Gaussian then there existed no unique
specification for the joint probability density function (pdf)
of the returns [1, 6].

Modeling this clutter by non-Gaussian distributions led
to the requirement for classification techniques, which have
the ability to choose an appropriate model from a library of
distributions.

An alternative solution involves the use of generalised
distributions, which contain an implicit library of more spe-
cific distributions as special cases of the parameters of the
general distribution. An example of such a distribution is
the Compound Gaussian or the Rayleigh Mixture [9, 5].

In synthetic aperture radar (SAR), the clutter returns
from urban areas is often extremely heterogeneous. For
such clutter, the G distribution has been recently proposed
to model the radar return [3]. The idea for the G distribution
was based on the multiplicative model, where the outcome
is assumed to be the product of the terrain backscatter and
the speckle noise. In this case, the distribution of the terrain

backscatter is modelled by the square root of the generalised
inverse Gaussian distribution and the speckle noise by the
square root of the Gamma distribution. The distribution of
the amplitude return is denoted byX � GA(�; ; �; n) and
has the following pdf [3],
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where � 0, � � 0, �1 < � < 1, andn > 0 are the
distributional parameters,x � 0, and whereK�(�) denotes
the modified Bessel function of the second kind of order�.

The ability to coherently detect signals, with unknown
parameters such as amplitude and phase in a non-Gaussian
clutter environment, is of significant importance in the radar
scenario. This can be achieved in a reasonably simple man-
ner if the clutter is modelled by a spherically invariant ran-
dom process [1, 2].

In this paper, the use of the G distribution for coher-
ent clutter modeling is proposed. The paper is organised
in the following manner. In the next section, we present a
method for estimating the parameters of the G distribution.
Section 3 provides details on the spherical invariance of the
G distribution. In Section 4, we design optimal detection
structures in the Neyman-Pearson sense for the case where
the parameters of the signal are known and the case where
the amplitude and phase of the signal need to be estimated.
We conclude in Section 5.

2. ESTIMATION OF THE PARAMETERS OF THE
G DISTRIBUTION

In order for a distribution to be useful in practice, one must
have the ability to estimate the parameters of the distribu-
tion. Initially we calculated the maximum likelihood esti-
mators for the parameters of the G distribution. However,
no closed form expressions could be derived for the solu-
tion of the four parameters and, due to the complexity of



the resulting equations, numerical techniques were not prac-
tically feasible. An alternative estimation approach is to use
the method of moments.

The rth order moment of the G distribution is given
by [3],
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wherer > 0. The simultaneous solution of four arbitrary
moment equations is computationally very expensive and
does not lead to good parameter estimates unless the num-
ber of available samples is large (more than a thousand). To
overcome this problem, we propose the following method-
ology.

Let

R1 =
E(X2r+2)

E(X2r)
(3)

R2 =
E(X2r�2)
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and define
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By using four different values of the moment order param-
eter,r, we form four equations of the form (5) (substituting
the moment ratios by their sample counterparts) and solve
for the remaining parameters. These equations are far eas-
ier to manipulate and solve than those which are obtained
by simply utilising the relationship provided in (2). The
resulting equations can be solved for the four parameters
using numerical techniques such as the multi-dimensional
Newton-Raphson technique, provided the order of the mo-
ments is kept low. This approach leads to good parameters
estimates for sample sizes less than a thousand.

3. SPHERICAL INVARIANCE OF THE G
DISTRIBUTION

The clutter process in high resolution radars can be char-
acterised using the theory of Spherically Invariant Random
Vectors (SIRV’s). Let

~Z = S ~X (6)

whereS is a nonnegative random variable which is inde-
pendent of the zero mean complex Gaussian vector which
is defined asX = [XI ;XQ]. The subscriptsI andQ cor-
respond to the in-phase and quadrature components, respec-
tively. The resultingZ = [ZI ;ZQ] is a SIRV and can be

thought of as a complex Gaussian vector which has a mod-
ulating or smearing variableS [4]. The probability density
function ofZ is uniquely determined by its mean, covari-
ance matrix, and the characteristic pdffS(s) or the so-called
characterisation functionh2N (z��1zT ), where� is the
covariance matrix ofZ. In most cases, it is far easier to
derive the characterisation function than the characteristic
pdf. In the case of the G distribution we found that the char-
acterisation function is
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whereq = z�
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The characterisation functionh2N (q) has to fulfill the mono-
tonicity requirement [1, 8]. A sufficient condition for this
requirement is that

n � 1 (8)

Thus the multivariate pdf of a SIRV with a G-distributed
first order amplitude is given by

fZ(z) = (2�)�N j�j�1=2h2N (z��1zT ) (9)

4. DETECTION OF SIGNALS IN G DISTRIBUTED
CLUTTER

Herein we design optimal schemes for coherent detection
of deterministic signals in G distributed clutter. The prob-
lem of detecting a deterministic signals = Aej�v in G-
distributed clutter can be expressed in the following frame-
work

H : r = z

K : r = s+ z; (10)

whereH denotes the null hypothesis,K the alternative hy-
pothesis, and wherer = [rI ; rQ], z = [zI ; zQ], ands =
[sI ; sQ], are real vectors with2N entries representing the
observations of the received signal, interference, and deter-
ministic signal, respectively.

Provided that the covariance matrix� is known, one
can use a whitening transformation without penalty [10],



providing that the parametern � 1. Whitening the received
signal leads to the following framework

H : x = n

K : x = u+ n; (11)

wherex is the whitened version of the received signal vec-
tor r, andn andu represent the whitened versions of the
interference vectorz and deterministic signal vectors, re-
spectively.

First, we consider the case of a known signal for which
the log-likelihood ratio test (LLRT) can be constructed. This
stage of the detection process is essential as the results are a
reference point for subsequent and more complex analyses
into cases where some or all of the parameters of the signal
need to be estimated.

The LLRT has the following form for known signals in
G distributed clutter.
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whereT is an appropriate threshold. The functiong(�) is
given by

g(x) = log
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In the case where both the phase and the amplitude of the
signal are unknown we use the generalised log-likelihood
ratio test (GLLRT) where the unknown parameters are re-
placed by their maximum likelihood estimates. The GLLRT
can be expressed as follows,

�(x) = log
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The maximum likelihood estimators for the amplitudeA
and phase� are given by

Â =
jhx;pij
kpk2 ;

and

�̂ = �

respectively, where� is the phase of the inner producthx;pi
andp is the whitened version ofv [7].

The substitution of these equations into (14) for the un-
known amplitude and phase case, results in the following
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4.1. Performance Analysis

The performance of the detectors, which were developed in
the previous section, needs to be evaluated using computer
simulations since the pdfs of�(x) in the expressions (12)
and (14) under the hypothesis and the alternative cannot be
expressed in closed form. We assumed that the parame-
ters of the G distribution were known and they were arbi-
trarily assigned values within the parameter space defined
under the requirement of monotonicity criterion. This sit-
uation occurs when the clutter statistics have already been
estimated prior to the detection process.

Examples of the performance of the detectors of known
signals and unknown signals are provided in the receiver
operating characteristics (ROC) of Figure 1 and Figure 2
respectively. In this case the values of the parameters of
the distribution were assigned the values of� = �1,  =
0:405, � = 1 andn = 1. The number of integrated pulses,
N , was set to 4. The ROCs were obtained for 10,000 realisa-
tions of the clutter process using Monte Carlo simulations.

The ROC plots indicate that even for a very low num-
ber of integrated pulses the unknown signal detector can
provide good performance when compared to the reference
ROC which was generated using known signals.

The development of ROCs for the case where both the
signal and the clutter parameters are completely unknown is
a topic of research which is currently under investigation.

5. CONCLUSION

With the aid of the theory of Spherically Invariant Ran-
dom Vectors, it is possible to conclude that the G distribu-
tion can certainly be used in the coherent detection of radar
signals in non-Gaussian clutter, provided that the associ-
ated monotonicity requirement is met. Optimal detection
structures for both the reference, known signal case and the
unknown phase and amplitude signal case have been pre-
sented. In addition to this a simplification for the estimation
of the parameters of the distribution has also been presented.
These developments may lead to more widespread use of
the G distribution in radar practice.
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Figure 1: The receiver operating characteristics for a known
signal embedded in G-distributed clutter forN = 4.
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