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ABSTRACT

    We present a quantitative method for identifying the onset of
epileptic seizures in the intracranial electroencephalogram (IEEG),
a process which is usually done by expert visual inspection, often
with variable results.  We performed a fractal dimension (FD)
analysis on IEEG recordings obtained from implanted depth and
strip electrodes in patients with refractory mesial temporal lobe
epilepsy (MTLE) during evaluation for epilepsy surgery.  Results
demonstrate a reproducible and quantifiable pattern that clearly
discriminates the ictal (seizure) period from the pre-ictal (pre-
seizure) period. This technique provides an efficient method for
IEEG complexity characterization, which may be implemented in
real time. Additionally, large volumes of IEEG data can be
analyzed through compact records of FD values, achieving data
compression on the order of one hundred fold. This technique is
promising as a computational tool for determination of
electrographic seizure onset in clinical applications.

1. INTRODUCTION

Clinical Background
    The exact time of electrographic seizure onset on IEEG is often
controversial among clinical epileptologists. This is because it is
often difficult to determine, by visual inspection, exactly when low
amplitude, high frequency fast activity, subtle rhythmic activity or
bursts of epileptiform discharges which evolve into seizures, begin.
It is also difficult to distinguish these seizure onsets from similar
bursts of non-sustained activity that occur regularly between
seizures (interictally). Opinions frequently vary between individual
experts, and even over time in single experts. The need for a
quantitative tool to supplement expert visual analysis is clear.  The
ability of the FD to detect transients or nonstationarities in signals
suggests that this may be a useful tool for this application.  It is
possible that in the future, with validation of this method over a
larger number of patients, clinical neurologists could use FD
records as a method for rapid screening of IEEG for seizure onsets,
before focusing on more cumbersome tracings of raw IEEG.

 Mathematical Background
    Since the origin of Euclidean geometry and trigonometry, the
line has been used as a basic building structure to describe the
objects around us. Fractal geometry, popularized over the last
decade, is a new language used to describe, model, and analyze
complex forms or curves found in nature. FD can be considered a
relative measure of the number of basic building blocks that form a

pattern. This particular feature has been used, with great success in
a variety of applications in biomedical science for transient
detection, waveform complexity estimation, pattern recognition,
etc, [1]-[11]. One area in which FD analysis has been particularly
useful is in the analysis of EEG to characterize neurophysiological
states [5]-[7], [12]-[13].
    FD is a measure of signal complexity that can characterize
different pathophysiological conditions. It provides an alternative
technique for assessing signal complexity in the time domain, as
opposed to the embedding method of assessing this complexity by
reconstructing the attractor in the multidimensional phase space
[12], [14]-[16]. This innovation permits a direct connection
between complexity variations and EEG changes over time,
providing a fast computational tool to track nonstationarities in this
signal. The FD also has the advantage of data volume reduction. It
is calculated over time in an overlapping sliding window, which
greatly reduces the number of data points stored.  The exact amount
of data depends upon the sliding window size and on the overlap
used for the analysis.
    A fractal curve in an n-dimensional space has topological
dimension n, and a non-integer or fractional dimension called
fractal dimension. It also possesses the characteristic that each
portion of it can be considered a reduced-scale image of the whole
for all time scales (i.e. its topological properties are preserved
under magnification or reduction). If the scaling factor is the same
for all time scales, then the curve is said to be self-similar. Many
algorithms developed to estimate the FD are based on the
assumption of self-similarity and independence of scaling.

2. METHODS

    Intracranial EEG (IEEG) recordings were obtained from four
patients with MTLE implanted with depth and strip electrodes at
Emory University Hospital as part of their pre-surgical evaluation
for medically refractory epilepsy. IEEG recordings provide a
relatively artifact-free signal, and better signal to noise ratio (SNR),
than is typically obtainable from conventional scalp EEG. The
IEEG was sampled at 200 Hz and stored on compact discs. Time
synchonized video of the patient’s clinical condition throughout the
monitoring period was also stored on video tape, for purposes of
determining time of clinical seizure onset.  The acquisition system
had a built in bandpass filter with low and high cutoff frequencies
of 0.1 and 100 Hz, respectively. 64 channel digital IEEG, with
coincident surface EEG, was recorded referentially on a standard
Nicolet 5000 video-EEG acquisition system.  Ten minute segments
of IEEG were analyzed. The channel where the first changes



signaling seizure onset were observed (focus channel) was used in
the analysis in conjunction with a spatially adjacent channel.
   For clarity, we state the following definitions:
• Ictal period: time when the seizure takes place and develops.
• Preictal period: time preceding the ictal period.
• Clinical onset: the time when a clinical seizure is first

noticeable to an outside observer who is watching the patient
from whom the EEG is recorded.

• Electrographic onset: the beginning of a seizure as marked
by the current “gold standard” of expert visual analysis of the
IEEG.

In all four patients analyzed, electrographic seizure onset clearly
preceded clinical onset.  This should always be the case, provided
that implanted electrodes are placed near or in the region from
which seizures first arise (ictal onset zone).
   As a pre-processing step, the spatial difference of the EEG signal
over time was obtained by subtracting the focus channel from the
adjacent channel selected (bipolar montaging). This was done to
remove any noise common to both channels. As a result, any
common mode cortically generated signals were also eliminated.
This was not felt to adversely affect the detection of seizure onset,
however, as the seizure onset patterns were highly localized to the
focus channel. IEEG data were processed both with and without
channel subtraction.  Results demonstrated better detection with
channel subtraction.  This shows that the spatial separation between
the electrodes inside the brain is short enough to cancel the
common noise in that region, and long enough to capture a voltage
difference between the focus and its adjacent electrode. Of note,
each of these electrodes records the global activity of many
thousands of neurons.
   After this, a notch filter was run over the preprocessed data to
minimize the 60 Hz line effects. Subsequently, a sliding window of
250 points length (1.25 seconds) was shifted along the IEEG
sequence with 160 points (0.8 s) of overlap. The methodology is
summarized in figure 1. Over each IEEG segment obtained from
the sliding window the FD of a curve was computed by the
algorithm of Katz [13].
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Figure 1: Methodology Diagram

    The FD of a curve can be defined as:
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where L is the total length of the curve or sum of distances between
successive points, and d is the diameter estimated as the distance
between the first point of the sequence and the point of the
sequence that provides the farthest distance. Mathematically
speaking, d can be expressed as:

( )i),distance(1 maxd = (3)

Considering the distance between each point of the sequence and
the first, point i is the one that maximizes the distance with respect
to the first point.
   The FD compares the actual number of units that compose a
curve with the minimum number of units required to reproduce a
pattern of the same spatial extent. FDs computed in this fashion
depend on the measurement units used. If the units are different,
then so are the FDs. Katz’s approach solves this problem by
creating a general unit or yardstick: the average step or average
distance between successive points a.  Normalizing distances in
Equation (2) by this average results in:
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Defining n as the number of steps in the curve, then n = L/a, and (4)
can be written as:
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Expression (5) summarizes Katz’s approach to calculate the FD of
a waveform.

3. RESULTS

    Sixteen seizures from four patients with MTLE were analyzed.
The FD was computed as stated in (5). Figures 2 through 4 show
the FD over time for the preictal and ictal of all records from three
of the patients analyzed.
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Figure 2: Fractal dimension over time (min) for patient 1, preictal
(from –7 to 0 min) and ictal (from 0 to 3 min) periods.
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Figure 3: Fractal dimension over time (min) for patient 2, preictal
(from –7 to 0 min) and ictal (from 0 to 3 min) periods
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Figure 4: Fractal dimension over time (min) for patient 3, preictal
(from –8 to 0 min) and ictal (from 0 to 2 min) periods

Electrographic seizure onset time, as marked by an expert reader is
marked as time = 0 on these graphs. The FD in the fourth patient
(not shown) demonstrated similar behavior.
A repetitive ictal pattern can be observed in each record, unique to
each patient, and differing somewhat from one patient to another.
The trend in FD from seizure onset to resolution is similar patterns
across patients.  The most remarkable aspects of these trends are:
(1) during the preictal period the FD is relatively low, (2) the FD
exhibits an increment during the initial stage of the ictal period, and
then (3) it decreases again usually reaching the lowest complexity
level of the recording. The mean and variance of the FD were
calculated for two intervals in each seizure: (1) for the entire
preictal period up until the first indication of the rise associated

with ictal onset, and (2) for the entire ictal period (from the onset of
the ictal rise in FD until the point at which the FD began its descent
toward its minimum). Comparing the mean of FD for preictal and
ictal epoch by student two-tailed t-test, demonstrates that these
epochs can be easily distinguished from each other (p = 5 x 106),
and the time of seizure onset clearly identified. Figure 5 shows the
variance for each record computed during the preictal periods (S1)
and during the initial phase of the ictal portion (S2).
    The FD algorithm implemented ran in 2.1410s over records of
12,000 points (10min), on a 400 MHz Pentium II computer. It
required 3,351,461 floating point operations for each 10 minute
record  analyzed, as estimated using Matlab.
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Figure 5: Variance of the fractal dimension for each record during
preictal (S1) and ictal period (S2).

        4.  DISCUSSION

    Our preliminary results indicate that electrographic seizure onset
in IEEG occurs at the beginning of an increment in system
complexity.  Of note, the FD algorithm appeared to determine time
of seizure onset with greater precision and reproducibility than our
expert reader, as evidenced by the small relative shift in waveforms
from one seizure to another, with respect to time = 0, in figures 2-4.
This method, if quantified and validated on a larger number of
patients, may prove useful to clinicians as they identify times of
seizure onset and spread throughout the brain on the IEEG.  In
addition, the application of this FD algorithm might be useful as
part of an automated seizure detection device.
    To the best of our knowledge, only [5]-[6] have reported using
this FD algorithm on EEG data, both with limited results. This
appears to be due to the lack of a statistically reliable sample, and
in some cases to the short length of the sequences analyzed.  Much
of the previous work using these techniques is based upon only one
or very few EEG records [2], [6]-[13], [15]-[17].
    Other algorithms to compute the FD have been proposed and
applied to experimental data [3], [17]-[19]. Petrosian used a quick
estimate of the FD. However, it turns out that this estimate is really
the FD of a digital sequence. Since the EEG is an analog signal, a
digital signal was derived by subtracting consecutive samples in
this study [17]. From this sequence of subtractions, a binary
sequence is created assigning +1 or –1 if the subtraction is positive
or negative respectively. The FD is computed then as:
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where n is the length of the sequence (number of points), and ∆N
is the number of sign changes (number of dissimilar pairs) in the
binary sequence generated. We tested this algorithm on our data,
but the distinctness of the patterns decreased in three of the
patients.
   Besides, the FD in (1) seems to be highly related to the mean
frequency of the signal derivative, due to the nature of the digital
signal considered. Note that the number of dissimilar pairs ∆N  can
also be considered the number of zero crossings when the dc level
is removed, and hence its relation to the frequency becomes
apparent. For practical values of n and ∆N  Equation (1) is simply a
straight-line relation between D and ∆N .
   In contrast to this method, our FD calculation is slightly slower
than that of Petrosian, but it is derived directly from the IEEG,
eliminating one step of preprocessing, and any bias introduced by
linkage of the FD to the mean frequency of the signal derivative.

5. CONCLUSION

    This study suggests that the FD is a useful, practical tool for
identification of seizure onset in the IEEG.  Results presented here
show that each patient has a characteristic FD “fingerprint” during
ictal epochs. Trends in FD during seizures were similar across
patients. A complexity increment was observed in all patients at the
beginning of the ictal stage followed by a reduction of system
complexity. These complexity changes may provide insight into the
underlying dynamics of this unknown system.
    In addition, the method applied in this study opens the possibility
of designing an intelligent system for detecting and warning of
seizures in real time. Further studies, over a bigger database are
required to provide statistical power to validate this method and
compare it with the current "gold standard" of expert visual
analysis of electrographic seizure onset.
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