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ABSTRACT

This paper presents a CFAR detector based on the bootstrap
for detecting signals with unknown amplitude, phase and
frequency such as found in conventional pulsed radar and
sonar systems. The detector is robust against non-Gaussian
noise, and can still maintain the false alarm rate without
much modification if consistent estimates are substituted for
unknown parameters. Preliminary asymptotic results are
given on the performance of the detector, and simulations
are used to study the performance for small samples sizes.

1. INTRODUCTION

In this paper, we address the problem of signal detection in
conventional pulsed radar or sonar systems. To deal with
non-Gaussian interference, one approach in the literature is
to use general parametric models [4]. Another approach is
to use nonparametric techniques such as rank-based tests
[2]. While this latter approach offers many advantages over
parametric techniques, the great difficulty of the correct set-
ting of the threshold to maintain a constant false alarm rate
(CFAR) has remained largely unresolved. Typically, the
threshold is set according to asymptotic results or derived
through tedious Monte Carlo simulations and the detector
does not perform well for the small-sample case.

We present here a nonparametric method based on the
bootstrap [10] which is able to maintain a constant false
alarm rate even for sample sizes as small as 100. The detec-
tor is noncoherent and is readily extended to the case where
the signal frequency is unknown. A bootstrap detector for
the deterministic signal case has already been reported in
[9, 5], and although simulation results there indicate that its
performance is not better than the CFAR matched filter’s
[8], they did show that the detector is robust against distri-
butional deviations from the Gaussian noise assumption. In
this contribution, the detector is for the signal with unknown
parameters case and is attractive for the following reasons:
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� A constant false alarm rate is maintained without re-
quiring the noise variance to be known. Hence, the
detector is CFAR.

� The detector is robust against non-Gaussian noise such
as noise with heavy-tailed distributions.

� Estimates of the unknown amplitude, frequency and
phase are by-products of the detector. In addition,
bootstrap confidence intervals for these estimators can
be computed at little extra computational cost.

� When the frequency is known, amplitude-modulated
signals can also be detected.

The paper is organised as follows. In the next section,
the problem is formulated. Section 3 presents the detector
based on the bootstrap. In section 4, the performance anal-
ysis is given. Simulation results and conclusions appear in
sections 5 and 6 respectively.

2. PROBLEM FORMULATION

The problem of detecting a signal return can be expressed
by the following model and hypotheses:

Xt = A sin(!t+ �) +Wt; t = 0; : : : ; N � 1; (1)

H0 : A = 0 versus H1 : A > 0; (2)

whereA, !, � are the unknown amplitude, frequency and
phase of the signal with the following rangesA � 0, ! 2
[0; �], � 2 [��; �). The noise,fWtg are independent and
identically-distributed noise with zero mean and variance
�2.

When the frequency is known, and the noise distribution
is known to be Gaussian, the non-CFAR optimum detector
is applicable. Its test function for a nominal false alarm rate
of � is [6],

�(x) =

8<
:

1 >

 if r =
p�N�2 log(�);

0 <
(3)



wherer =
p
x2c + x2s, xc =

P
t xt cos(!t), andxs =P

t xt sin(!t), andx = (x0; : : : ; xN�1)
0 are the observed

samples. This test is derived by treating the phase as uni-
formly distributed in [��; �) in the likelihood ratio. Its
probability of detection is given by

Pd =

Z 1

�

xe�(x
2+b2)=2I0(bx) dx

4
= Q(b; �); (4)

whereI0 is the zeroth-order modified Bessel function of the
first kind,� =

p
�2 log(�) andb2 = NA2=(2�2). Q(b; �)

is the so-called Marcum’sQ function.
When the noise distribution is unknown, a better detec-

tor is the one based on least-squares regression and the F-
test. The model in (1) is expressed as

Xt = h0t� +Wt; t = 0; : : : ; N � 1; (5)

where� = (A cos�;A sin �)0, andht = (sin(!t); cos(!t))0.
The least-squares estimator of� is �̂ = (H0

H)�1H0X,
whereH = (h0; : : : ;hN�1)

0 andX = (X1; : : : ; XN�1)
0.

UnderH0, we test� = 0 with the following test function
[1],

�(x) =

8<
:

1 >
 if F = �;
0 <

(6)

where

F =
N � 2

2

�̂
0
H
0
H�̂

X 0(I�H(H0H)�1H0)X
; (7)

and� is the threshold found from inverting the central F-
distribution with2 andN�2 degrees of freedom for a prob-
ability of 1� �.

Although robust against non-Gaussian noise, the F-test
is not applicable when the frequency is replaced with an es-
timated frequency because the uncertainty in the frequency
estimator is not taken into account by the test. In the next
section, we propose a bootstrap-based detector that does au-
tomatically take this uncertainty into account when a fre-
quency estimate is plugged in for the unknown frequency.

3. BOOTSTRAP-BASED DETECTOR

The bootstrap is a statistical method for estimating the sam-
pling distribution of a statistic from the sample data itself
(see Figure 1). In this way, modelling assumptions about the
noise and signal are relaxed. It has been shown that, under
some regularity conditions, bootstrap methods are second-
order accurate as compared to the usual normal approxima-
tion [3], which is only first order accurate. For example, for
a pivotal statisticT ,

Pr(T � � x) � Pr(T � x) = Op(N
�1): (8)

The� indicates the bootstrap analogue, e.g.,T � is the statis-
tic based on bootstrap (resampled) datax� (see Figure 1).

Figure 1: The Bootstrap Procedure
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3.1. Frequency Known

To derive a test for known frequency, we use the least-squares

estimators ofA and �, which areÂ =

q
�̂21 + �̂22 and

�̂ = tan�1(�̂2=�̂1), where�̂1 and�̂2 are the entries of̂�
given in the previous section. We then make the following
conjecture.

p
N c sup

x

���Pr
�
Â�=�̂Â�

� x
���H0

�
�

Pr
�
Â=�̂Â � x

���H0

� ��� �!a:s: 0; (9)

for some constantc < 0, and for consistent estimators,�̂2
Â�

and�̂2
Â

, of the variance of̂A� andÂ respectively. This then
motivates the following test function.

�(x) =

8<
:

1 >

 if Â=�̂Â = �;
0 <

(10)

where� is found from the bootstrap distribution of̂A�=�̂Â� ,
PrfÂ�=�̂Â�

� xjH0g. The step-by-step procedure to com-
pute� is given in Table 1.

The variances,̂�2
Â�

and�̂2
Â

, are estimated using a nested
bootstrap. Apply steps 3 and 4 onfxtg and each set of
fx�t gb, b = 1; : : : ; B, t = 0; : : : ; N � 1, to obtainfÂ�b1g
andfÂ��b1 gb, b = 1; : : : ; B, b1 = 1; : : : ; B1. Then calcu-

late, �̂2
Â

= B�11

P
b1
(Â�b1 � B�11

P
b2
Â�b2)

2 and �̂2
Â�

=

B�11

P
b1
(Â��b1 �B�11

P
b2
Â��b2 )

2. Typical values forB and
B1 are999 and25 respectively. For more details on the
nested bootstrap, see [10].



Table 1: Bootstrap procedure for computing the threshold.

Step 1. Compute the least-squares estimates,Â and
�̂, fromx0; : : : ; xN�1.

Step 2. Calculate the residuals,
ŵt = xt � Â sin(!t+ �̂), t = 0; : : : ; N � 1,
and center to obtain~wt = ŵt �N�1

P
k ŵk .

Step 3. Resample residuals:x�t = ~wkt , wherefktg
are generated from the discrete random
variableK with probability
PrfK = tg = 1=N , t = 0; : : : ; N � 1.

Step 4. Compute the least-squares estimates,Â� and
�̂� from x�0; : : : ; x

�
N�1, and the bootstrap

statistics,T � = Â�=�̂Â� .

Step 5. Repeat Steps 3–4 many times to obtainB
bootstrap statistics,T �1 ; : : : ; T

�
B .

Step 6. Sort theB bootstrap statistics to get
T �(1) � � � � � T �(B) and set the threshold,
� = T �(q), whereq = b(1� �)(B + 1)c.

3.2. Frequency Unknown

When the frequency is not known, we substitute a consis-
tent estimatê! in its place. Table 1 applies with estimates
!̂ and!̂� included in steps 1 and 4 respectively. This ease of
incorporating unknowns into the detection scheme without
needing a lot of modifications highlights one of the advan-
tages of the bootstrap approach. Of course, however, the
performance of the detector will depend on the accuracy of
the estimators.

For estimating the frequency of a single tone, we investi-
gated the use of̂! = argmax! jd(N)

X (!)j (whered(N)
X (!) =P

t xt exp(�j!t=N) is the finite Fourier transform), and
a computationally faster method from [7] which also use
d
(N)
X (!). Estimators forA and� are also conveniently found

from the finite Fourier transform,̂A = 2
N jd(N)

X (!̂)j and

�̂ = 6 d
(N)
X (!̂)+�=2, without recoursing to least squares. A

simulation study shows that these estimators are consistent
although we do not report the results here.

4. PERFORMANCE ANALYSIS

As the performance of the bootstrap-based procedure is highly
dependent on the estimators chosen as well as the noise
distribution, closed-form expressions for the probability of
false alarm and the probability of detection are not avail-

able. In this section, we state the asymptotic distribution of
T = Â=�̂Â with only brief details. First, it can be shown by
applying asymptotic theory of the finite Fourier transform
[1], that the probability density of̂A is

fÂ(x) =
x

v
exp(�(x2 +A2)=(2v))I0(xA=v); x � 0;

(11)

wherev = 2�2=N . The variance of̂A estimated using the
nested bootstrap step is asymptotically efficient and con-
verges to�2

Â
= (4 � �)�2=N underH0. The asymptotic

density ofÂ=�̂Â is then

fT (x) = ax exp(�(ax2 +A2=v)=2)I0(�ÂxA=v); x � 0;
(12)

wherea = 2� �=2. The probability of detection is asymp-
totically given byPd =

R1
�

fT (x) dx, where� is the thresh-
old satisfying

R1
� fT (xjA = 0) dx = �.

5. SIMULATIONS RESULTS

In this section, we examine the performance of the detector
and compare it with the classical ones based on uniformly-
distributed phase and based on least-squares regression us-
ing simulations. Probabilities of false alarm and detection
based on 100 simulations are tabulated in Tables 2 and 3 for
the known frequency case with Gaussian andt4 distributed
noise respectively. Throughout the simulationsN = 100,
A = 1, � = 1=4, ! = 0:4�, � = 0:05, B = 999 and
B1 = 25. From the tables, it is seen that the bootstrap-based
detector maintains the false alarm rate at the nominal level,
although it is not as powerful as the other detectors. Tables 4
and 5 give the results for the unknown frequency case. Only
the bootstrap-based detector is applicable in this case, high-
lighting once again the ease with which the bootstrap can
handle plug-in estimates in place of unknowns with little
modification required. The classical detectors do not work
in this case even if the unknown frequency is replaced with
an estimate.

6. CONCLUSIONS

This paper has presented a CFAR detector based on the
bootstrap for signals with unknown amplitude, phase and
frequency. The detector is robust against non-Gaussian noise,
and can still maintain the false alarm rate without much
modification if consistent estimates are substituted for un-
known parameters. Preliminary asymptotic results were given
on the performance of the detector, and simulations were
used to study the performance for small samples of size 100.



Table 2: Estimated probabilities of false alarm (upper val-
ues) and detection (lower values) for known frequency and
Gaussian noise. The detectors are based on the bootstrap
(B), least-squares regression (F), and uniformly-distributed
phase (Q).

SNR (dB)
Det. -10 -5 0 5 10

0.01 0.09 0.03 0.05 0.06B
0.76 1.00 1.00 1.00 1.00
0.04 0.11 0.04 0.03 0.03F
0.82 1.00 1.00 1.00 1.00
0.09 0.10 0.05 0.03 0.04Q
0.80 1.00 1.00 1.00 1.00

Table 3: Estimated probabilities of false alarm (upper val-
ues) and detection (lower values) for known frequency and
t4 noise.

SNR (dB)
Det. -10 -5 0 5 10

0.05 0.05 0.05 0.07 0.09B
0.77 0.98 1.00 1.00 1.00
0.05 0.07 0.09 0.04 0.04F
0.86 1.00 1.00 1.00 1.00
0.07 0.08 0.07 0.04 0.02Q
0.85 1.00 1.00 1.00 1.00

Table 4: Estimated probabilities of false alarm (upper val-
ues) and detection (lower values) for unknown frequency
and Gaussian noise.

SNR (dB)
Det. -10 -5 0 5 10

0.05 0.05 0.05 0.04 0.05B
0.17 0.71 1.00 1.00 1.00

Table 5: Estimated probabilities of false alarm (upper val-
ues) and detection (lower values) for unknown frequency
andt4 noise.

SNR (dB)
Det. -10 -5 0 5 10

0.05 0.03 0.01 0.02 0.00B
0.18 0.71 0.99 1.00 1.00
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