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ABSTRACT

A two-dimensional extension of Hidden Markov Models
(HMM) is introduced, aiming at improving the modeling
of speech signals. The extended model (a) focuses on the
conditional joint distribution of state durations given the
length of utterances, rather than on state transition proba-
bilities; (b) extends the dependency of observation densities
to current, as well as neighboring states; and (c) introduces
a local averaging procedure to smooth the outcome associ-
ated to transitions from successive states. A set of e�cient
iterative algorithms, based on segmental K-means and It-
erative Conditional Modes, for the implementation of the
extended model, is also presented. In applications to the
recognition of segmented digits spoken over the telephone,
the extended model achieved about 23% reduction in the
recognition error rate, when compared to the performance
of HMMs.

1. INTRODUCTION

Despite its success, the HMM framework presents three ob-
vious limitations at the modeling level of speech production
(synthesis): (i) state durations are implicitly exponentially
distributed (a side-e�ect of the Markovian assumption); (ii)
high temporal correlations in the signal are not fully cap-
tured, since data are supposed to depend only on current
states; (iii) the discontinuity produced in synthesized data,
when state jumps occur, is not consistent with the smoothly
varying trend observed in real signals.

Researchers have acknowledged some of these shortcom-
ings. To improve the state duration modeling, explicit state
duration models, also known as semi-HMMs, have been
proposed (e.g. [3]); and many extensions of HMM have
appeared in the literature addressing the weak temporal
correlation accounted for in the original HMM approach.
Among these extensions are the frame correlated HMM [8],
the conditionally Gaussian HMM [16], and two-dimensional
HMMs [11]. In contrast, the continuity problem has yet
to be addressed (however, the class of segment HMM [13],
which is usually viewed as a method for improving temporal
correlations, falls mostly within this problem).

In extensions of HMM such as the ones in [15][14], the
current state as well as the previous observation are used to
determine or restrict the current observation density. This
approach falls short of a full solution to the temporal corre-
lation and continuity problems (the dependency is obviously
restricted to past states, in order to keep the e�ectiveness

of dynamic programming in place), since it is more natural
and precise to condition the current observation density on
the preceding as well as subsequent states and correspond-
ing observations (it is well-known that, due to the nature of
the articulation process, the pronunciation of a determined
phoneme is a�ected by both the preceding and subsequent
phonemes [10, pp. 124{127]).

Two-dimensional extensions of HMMs (usually created
for the analysis of spectrograms or log-spectrograms) of-
fer a more realistic approach to speech recognition, but
so far, they are not considered practical, due to a lack
of e�cient algorithms for their implementation (however,
see [11]). In this paper, we propose a new class of two-
dimensional HMMs that addresses the three limitations sta-
ted above, and that can be e�ciently implemented through
a set of iterative algorithms. In fact, this new class of pro-
cesses: (a) model the state durations explicitly; (b) extend
the dependency of observation densities to current, pre-
ceding, and subsequent states; and (c) introduce a local
smoother that acts on mean energies associated to succes-
sive jumps of states.

We advocate two-dimensional models, because speech
signal representations correspond naturally to two-dimen-
sional objects; one of the dimensions represents time, and
the other, frequency (or something equivalent, such as cep-
strum coe�cients, wavelet scale parameters, etc). More-
over, data are locally continuously-varying in both dimen-
sions. We believe that, if local continuity is appropriately
modeled, then global characteristics of the data will be es-
timated more e�ciently given the same amount of training
data; in fact, our experiments (see x5 below), support this
belief.

Since this new approach gives up the single directed
temporal dependence relationship that prevails in the usual
HMMs framework, no parallel to the Viterbi, and Baum-
Welch algorithms that �t HMMs can be applied here (dy-
namic programming is not e�ective in this new set-up). In-
stead, to solve the estimation problem, a procedure based
on the segmental K-means algorithm [7], is proposed; and
to compute fast estimates of probabilities, an iterative pro-
cedure similar to the Iterative Conditional Modes algorithm
(ICM) [1] is suggested (see x4).

We have applied our model to a speaker-independent
recognition problem, involving segmented digits, spoken o-
ver the telephone (see x5); when compared to the perfor-
mance of HMMs with about the same number of parame-
ters, on the same task, our algorithm achieved about 23%



reduction in the error rate.
This paper is organized as follows. Section 2 describes

the basic time-frequency representation used by our mod-
els. Section 3 introduces our two-dimensional extension of
HMMs, and discusses how these new processes overcome the
three limitations stated above. Section 4 deals with the al-
gorithms involved in the estimation of parameters. Section
5 contains the results related to the particular application of
our model to the recognition of segmented (spoken) digits.

2. SPEECH SIGNAL REPRESENTATION

We consider the normalized log-spectrogram associated to
each utterance of a word, as the basic object representing
the speech signal. The frequency domain corresponds to
the output of a bank-of-�lters signal processing front-end.
In our studies, we work with the Bark frequency scale, as
described in [10, pp. 159{161]. Normalization is achieved
by averaging all frequency band energies over the entire
time-frequency span of each utterance; this yields a two-
dimensional array of observations fOtf : t = 1; : : : ; T; f =
1; : : : ; Fg, where T stands for the length or duration (mea-
sured in overlapping frames) of the utterance, and F , for
the number of frequency bands (about 20 or less, depending
on the task).

For �xed � � 1 and � � 1, we de�ne a neighborhood
structure over the lattice L = f1; : : : ; Tg � f1; : : : ; Fg,
much in the same way as it is done over Gibbs random �elds
[4]. Associated to each lattice point (t; f) 2 L there are two
neighborhoods composed of nearest-neighbor lattice points,
denoted and given by @(t; f) = f(t0; f 0) : maxf1; t � �g �
t0 � minfT; t + �g; maxf1; f � �g � f 0 � minfF; f +
�g; (t0; f 0) 6= (t; f)g (a �rst order neighborhood); and
@2(t; f) = f(t00; f 00) : (t00; f 00) 2 @(t0; f 0) for (t0; f 0) 2 @(t; f)g
(a second order neighborhood). These neighborhoods play
central roles in the characterization of our two-dimensional
model.

3. A TWO-DIMENSIONAL HMM

Our model for each unit of speech, e.g. word, phoneme,
or syllable, consists of a double stochastic array fYtf ;Xt :
t = 1; : : : ; T; f = 1; : : : ; Fg, where fYtfg is the observation
process, and fXtg is the state process.

3.1. The State Process

The process fXtg takes values on a �nite and ordered state
space S = fq1 � q2 � � � � � qrg, and is assumed to be a left-
to-right process, i.e. Xt � Xs if and only if t � s; it replaces
the Markov chain process of the usual HMM framework. A
crucial departure from this latter framework is our interest
on the joint distribution of fXtg given the length T of the
utterance, rather than on state transition probabilities. We
assume that this joint distribution depends only on the vis-
ited states and the associated lengths of the visits. More
precisely, let the random variable Di = length of visit to
state qi, i = 1; : : : ; r; then P (X1 = s1; : : :XT = sT jT ) =
P (D1 = d1; : : : ;Dr = dr jT ), where di = number of times
st = qi, i = 1; : : : ; r; s1; : : : ; sT 2 S. Di is assumed to be
a mixture of a point mass m0(qi) at zero, and a truncated

Poisson with mean rate �i, i = 1; : : : ; r; this assumption
yields

P (s1; : : : ; sT jT ) =

rY
i=1

f(1�m0(qi)) (1� �0di)�

e��i(1� e��i )�1(�dii =di!) +m0(qi)�0dig

where �0di = 1 if and only if di = 0, and it is zero otherwise.

3.2. The Observation Process

The dependency of each observation variable Ytf on the
whole set of observations fYt0f 0g excluding itself, given the
state process, is restricted to its neighbors (see x2) Y@(t;f) =
fYt0f 0 : (t0; f 0) 2 @(t; f)g. In what follows, O�(tf) will stand
for the set of all observations in the lattice L excluding Otf ,
(t; f) 2 L.

Let sT1 denote a realization of the random vector fXtg,
and s@(t;f), s@2(t;f), denote those state values associated
to the �rst and second order nearest neighbors of (t; f),
respectively (notice that, by an abuse of notation, s(t0;f 0)

refers to st0); we write

P (Ytf = Otf jO�(tf); s
T
1 ) = P (Otf jO@(t;f); s@2(t;f)) (1)

i.e., we assume that the density of Ytf not only depends on
the current state Xt = st, but also on neighboring obser-
vations and states. Our model incorporates in this way the
high temporal correlation observed in speech signals. We
further assume that (1) corresponds to a Gaussian density
with mean �tf + �(t0;f 0)2@(t;f)fct0�t;f 0�f (Ot0f 0 � �t0f 0)g;

and variance �2tf ; where �tf = EfYtf j X@(t;f)g, and �2tf =

Var fYtf jY@(t;f);Xtg = �2(Xt; f) (here, Ef�j�g and Var f�j�g
denote conditional expectation and conditional variance, re-
spectively; and X@(t;f) is the analog of s@(t;f)). Thus, the
mean energy �tf at time t and frequency f , not only de-
pends on the current state, but also on the preceding and
subsequent states, s@(t;f). Detailed parameterization of �tf
is given below. �2tf is the conditional variance given the
neighboring states as well as neighboring observations. It is
assumed to depend on the state sequence only through the
current state (in our experiments with spoken digits {see
below{, �2tf 's do not present strong variations over the time-
frequency domain). The projection coe�cient ct0�t;f 0�f

accounts for interaction between observations; it measures
the amount of the \reection" (see [9, Chapter 5] for de-
tails) from observation Ot0f 0 onto Otf ; it is assumed to
be invariant to both time and frequency translations. The
projection coe�cients are expected to be high, since high
positive correlation between energies on neighboring lattice
points is usually present over the time-frequency domain.
We note that the special case in which ct0�t;f 0�f = 0, for
all (t; f); (t0; f 0) 2 L, and �tf depends only on the current
state, corresponds to an ordinary HMM.

Symmetry constraints impose the well-known \detailed
balance" relation ct0�t;f 0�f �2t0f 0 = ct�t0;f�f 0 �2tf . Without

any special requirement on the �2tf 's, the detailed balance
relation will not be satis�ed. However, the relation will
be approximately satis�ed if �2tf 's do not vary too much (a
fact observed in our experiments; see x5), and the condition
ct0�t;f 0�f = ct�t0;f�f 0 is imposed.



It can be shown [9] that given a state sequence sT1 , fYtfg
is a Gaussian random �eld (GRF). A su�cient condition [9,
Chapter 5] to ensure that the variance-covariance matrix
associated to this �eld be positive-de�nite, is to constrain
the projection coe�cients to be small, namely

X
(t0;f 0)2@(t;f)

jct0�t;f 0�f j < 1 (2)

In our applications, we further constrain these coe�cients
to be positive. This is justi�ed by the positive correlation
observed among adjacent frequency energies.

Dealing with the spectral continuity problem.
In HMMs, �tf depends only on the current state st. As
we mentioned earlier, arti�cial discontinuities in the model-
ing of the time-frequency dynamics of speech signals are
produced when state jumps occur. A possible solution,
which is the one implemented in our model, is to allow
�tf to not only depend on the current state, but also on
neighboring preceding and subsequent states. More ex-
plicitly, we assume that �tf = EfYtf jX

T
1 g = �(Xt; f) +P

(t0;f 0)2@(t;f) at0�t;f 0�f�(Xt0 ; f
0), where �(s; f), the state-

dependent mean energy, depends only on the current state
s and frequency f ; it corresponds to the usual mean en-
ergy in HMMs. For simplicity, the smoothing coe�cients
fat0�t;f 0�fg are assumed to be invariant to translations
in time, and frequency. The (2� + 1) � (2� + 1) matrix
fat0�t;f 0�fg corresponds to a local smoother on the state-
dependent mean energy vector f�(st; f)g. Its role is to
smooth the outcome of possible jumps of states.

Generalization to Gaussian Mixtures. In incorpo-
rating Gaussian mixtures into the model, we follow the ap-
proach of Juang and Rabiner in [6], on partitioned Gaussian
mixtures, since it simpli�es both implementation and com-
putations in our algorithms. In fact, within this approach,
the choice of a mixture component mt 2 f1; : : : ;Mg (M
is the maximum number of mixtures allowed in a state),
as accounting for observation Ot, can be viewed as a visit
to a sub-state of state st (which now can be thought of as
a super-state); this sub-state can be denoted as (st;mt).
With this observation in mind, we can replace the state se-
quence sT1 by the state-mixture sequence (sT1 ;m

T
1 ), in all the

above considerations, and proceed exactly as we did before.
In fact, it can be easily seen that given the state-mixture
sequence, the observed process fYtf g is again a GRF. In
order to simplify the computations, we assume that given

a state sequence sT1 , P (m1; : : : ;mT js
T
1 ) =

QT

t=1
P (mtjst),

i.e. the occurrence of a mixture component mt at state st is
independent of the occurrence of any other mixture compo-
nent mt0 at any other time t0 6= t, given the state sequence
sT1 . In what follows we will denote P (mtjst) by mt;st .

4. PARAMETER ESTIMATION

The set of parameters determining our model, which we will
denote by �, is given by � = (f�(qi;m; f)g; f�2(qi; f)g;
fcdt;dfg; fadt;df g; fm;qig; fm0(qi)g; f�ig), where qi 2 S,
i = 1; : : : ; r; f = 1; : : : ; F , dt = ��; : : : ; � , df = ��; : : : ; �,
m = 1; : : : ;M (notice that �2(qi;m; f) = �2(qi; f), is as-
sumed to be constant over all mixture components associ-
ated to state qi, i = 1; : : : ; r).

Due to the intractability of the quantity

P (OT
1 j�) =

X
sT
1
;mT

1

P (OT
1 j(s

T
1 ;m

T
1 );�)P (m

T
1 js

T
1 ;�)P (s

T
1 j�)

under our model assumptions, we estimate P (OT
1 j�) byeP (OT

1 j�), which is given by

max
sT
1
;mT

1

P (OT
1 j(s

T
1 ;m

T
1 );�)P (m

T
1 js

T
1 ;�)P (s

T
1 j�) (3)

We refer to this latter quantity as the maximum likelihood
path probability. A justi�cation for this estimate, is that in
practical applications, the term associated to the optimal
state sequence, is the term that contributes almost all the
weight in the above sum.

Our training procedure maximizes eP (OT
1 j�) over the

parameter space �. The algorithm is based on the segmen-
tal K-means algorithm (see for example [7]), and iterates
between the following two steps: (A) the �rst step is to
�x the state-mixture sequence and maximize P (OT

1 j�) over
�. We note that this maximization corresponds to a con-
strained optimization problem, since the projection coe�-
cients fcdt;df g must be positive and satisfy condition (2).
The optimization can be done by separately maximizing
the three factors in (3), since the sets with parameters in-
volved in each of the factors are mutually disjoint. As a
result of this factorization, explicit expressions for the op-
timal fm;qig, f�ig and fm0(qi)g are easily obtained [9]:

̂m;qi =
number of visits to mixture component m

length of visit to state qi

�̂i = average length of visits to state qi

m̂0(qi) = proportion of utterances that skipped state qi

The remainder parameters are estimated using a gradient
descent technique over the parameter space. (B) the second
step consists of �nding the optimal state-mixture sequence

for �xed values of �, i.e. it consists of �nding eP(OT
1 j�).

This step solves the so-called decoding or time-alignment
problem, and is crucial for recognition purposes (see x5).
We propose an iterative procedure to get estimates of the
optimal state-mixture sequence. In each iteration, an or-
derly sweep is done over the state-mixture sequence, updat-
ing each state st and mixture component mt so as to maxi-

mize eP(OT
1 j�) given that the remainder states and mixture

components in the sequence remain �xed. In our experi-
ments described below, this algorithm converged very fast,
requiring about two or three iterations. This procedure
carries the same idea proposed by Besag [1] in his Iterative
Conditional Modes (ICM) algorithm, to compute a maxi-
mum a posteriori (MAP) estimate of Markov random �elds
parameters.

5. EXPERIMENTS

We applied our model to the recognition of segmented \dig-
its" (one, two, : : : ,nine, zero and oh), spoken over the tele-
phone. The data were taken from the CSLU Number Cor-
pus of the Center for Spoken Language Understanding of
the Oregon Graduate Institute of Science and Technology.



This corpus is a real world application that contains \u-
ent numbers" spoken by thousands of people when saying
numbers such as their street address numbers, zip-codes,
and telephone numbers. False starts, pauses, repetition,
and background noise are very common in these data, and
make the task di�cult (see [2] for more details). The cor-
pus is divided into three sets of 8829, 3052, and 3119 speech
�les; the �rst one is reserved for training, the second one,
for development, and the last one, for testing. We located
and worked with all occurrences of the eleven digits in the
corpus.

The number of states r in each digit model was deter-
mined by the particular phoneme con�guration of the cor-
responding digit. However, for simplicity, we imposed the
same number of mixture components (M = 4) in each state
of the eleven models. � and � were set to one.

Recognition. Given a test sample OT
1 , our procedure

recognizes it as an utterance of a determined digit d, if
�d = argmax�

d0
P (�d0jOT

1 ) = argmax�
d0
P (OT

1 j�d0) (here
we assume a uniform prior on word frequencies), where �d0

stands for the model corresponding to digit d0. As explained

in x4, we estimate P (OT
1 j�d) by eP (OT

1 j�d), which is com-
puted through an algorithm similar to ICM.

Results and Conclusions. Since this task can be re-
garded as an isolated speech recognition task with a fairly
small vocabulary, we decided to jointly train the eleven digit
models using the minimum classi�cation error (MCE) crite-
rion. In fact, it has been argued [5] that MCE methods are
superior to maximum likelihood estimation methods when
the assumed distributions given by the models, do not cor-
respond to the true ones. We observed this fact in our
experiments, as well (see [9] for more details).

Model parameters were estimated with an algorithm
very similar to the one described in x4. Several values of
the projection coe�cients were tried on all eleven models,
in order to explore the parameter space; those parameters
that minimized the classi�cation error over a validation set
(corresponding to a subset of the training corpus), were
chosen to test our models. The overall test error rate was
10.7%, which is considered small for this task, given that
previous studies involving a much larger number of model
parameters [12][17] reported error rates of about 5%{12%
on similar tasks involving the same database. For com-
parison purposes, we also �tted HMMs to the same task
(this corresponds to setting the projection and smoothing
coe�cients to zero). Our model yielded a 23% reduction
in the error rate, when compared to the performance of
HMMs. In fact, the solely incorporation of the smooth-
ing coe�cients fadt;dtg (setting the projection coe�cients
to zero) yielded a reduction of about 6% in the error rate.
It is worth-noting that we simply model the log-spectro-
gram of the words, and do not introduce any other features
(e.g. cepstrum coe�cients, power di�erences) in the ob-
servation process; hence, the improvement in recognition
rates achieved by our model, is due only to a more realistic
modeling of the speech signal process, and not to a better
extraction of feature vectors.
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