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ABSTRACT
This paper investigates the use of lip information, in conjunc-
tion with speech information, for robust speaker verification in the
presence of background noise. It has been previously shown in
our own work, and in the work of others, that features extracted
from a speaker’s moving lips hold speaker dependencies which
are complementary with speech features. We demonstrate that the
fusion of lip and speech information allows for a highly robust
speaker verification system which outperforms the performance of
either sub-system. We present a new technique for determining
the weighting to be applied to each modality so as to optimize the
performance of the fused system. Given a correct weighting, lip
information is shown to be highly effective for reducing the false
acceptance and false rejection error rates in the presence of back-
ground noise.

1. INTRODUCTION

Speaker verification can be thought of as person authentication us-
ing the class of information which arises from the production of
speech. Within this class, the most obvious source of features
is speech information itself. In ideal or clean conditions, auto-
matic speaker recognition (ASR) systems perform very well using
speech characteristics alone. However, considerable decreases in
performance are observed as a result of adverse variables such as
background noise, channel distortion or reverberation [1].

A less obvious source of information related to speech pro-
duction is that of visual lip information. Lip movement is a natural
by-product of the various positions the oral cavity must take to
produce the range of phonetic sounds we understand as speech. In
noisy conditions, a listener makes considerable use of lip informa-
tion to aid in the speech intelligibility process. We have shown in
our previous work that speaker recognition of reasonable accura-
cies can be obtained by using lip information only [2].

Previous work in acoustic-labial speaker verification has been
performed via the use of Hidden Markov Model (HMM) classi-
fiers usingfixedacoustic conditions [3]. Other recent audio-visual
authentication work has considered the fusion of facial and speech
information, however once again the fusion systems assume fixed
acoustic and visual conditions [4][5].

The work presented in this paper considers the fusion of
speech and lip information given that audio conditions can dif-
fer greatly from training to testing. We develop an algorithm for
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the automatic determination of weights to be applied to audio and
visual classifiers, so as to maximize verification performance over
a range of operating conditions.

2. SYSTEM FEATURE EXTRACTION

2.1. Audio Sub-System

The audio sub-system feature extraction is quite standard, with
mel-cepstral features [6] being extracted from the speech. Mel-
cepstral features have been shown in the past to be well suited for
speaker identification purposes [1], hence their use in this applica-
tion.

2.2. Visual Sub-system

To extract features from moving lips, a system must be able to
automatically locate and track the lip contour. This is by no means
a simple task and much research has gone into the topic of lip
tracking in itself.

We have presented in detail [2] a new method for lip track-
ing using a combined chromatic-parametric approach, where the
parametric lip contour model is derived directly from chromatic
information. This technique provides computational advantages
as no minimization procedure is required to fit the contour model
to the lips.

3. AUDIO AND VISUAL SYSTEMS

3.1. Audio and Visual Classifiers

Classification of both audio and visual data was achieved via the
use of the Gaussian Mixture Model (GMM). These models have
been used extensively in the past for the modelling of the output
probability distribution of speech features for a particular speaker
[6]. The multi-modal nature of the model allows it to cater for a
wide range of voice characteristics for each speaker.

Experiments also showed that thedistribution patternsof fea-
tures from a speaker’s moving lips, over a period of time, held
speaker dependent qualities [2]. The Gaussian mixture density for
a given model�i is given by:

p(~xj�i) =

MX
m=1

pim�(~x; �im;�im) (1)



where~x is the observation vector,pim is the mixture weight
for mixturem, of M mixtures, for speakeri, and�(~x; �;�) is a
multivariate Gaussian function with mean� and covariance matrix
�.

3.2. Verification Decisions

In any verification system the aim is to determine whether to ac-
cept or reject a speaker based on how well their data fits the model
of the claimed speaker. We can categorize the verification decision
as a two class problem where the classesH0 andH1 are the ac-
ceptance and rejection classes respectively. The simplest approach
is to compare the score from the model to a threshold and make a
class decision as:

P (Xmodej�mode
claim) � Tmode ) H0 (2)

P (Xmodej�mode
claim) < Tmode ) H1 (3)

where:

P (Xmodej�mode
claim) =

1

T

TmodeX
t=1

log p(xmode
t j�mode

claim) (4)

where�mode
claim is the model for the claimed speaker,T is the

number of frames for input featuresxmode
t , Tmode is the threshold

value andmode � [aud; vis].

3.3. Background Normalization

In general, superior verification performance can be obtained via
the use of background normalisation or cohort speaker models [7].
Rather than only theclaimedspeaker model score being used for
thresholding purposes, we also make use of background model
scores. Anormalisedscore is calculated as:

u(Xmodejsclaim) = log p(Xmodej�mode
claim)�

� log
X
b2B(i)

p(Xmodej�mode
b ) (5)

wheresclaim is the claimed speaker andmode � [aud; vis]
as before, andB is the background speaker set.

To increase the robustness of each client’s model to both sim-
ilar and dissimilar impostors, we incorporate bothnear and far
speakers into our background speaker cohort selection. We fol-
low a procedure similar to [6] where we select maximally-spaced
speakers from a close set, and maximally spaced speaker’s from
a far set, thus decreasing redundancy in the choice of background
speaker characteristics.

The final normalized scoreu is calculated as:

u(Xmodejsclaim) = log p(Xmodej�mode
claim)�

� log
X
b2C(i)

p(Xmodej�mode
b )�

� log
X

b2F(i)

p(Xmodej�mode
b ) (6)

whereC andF are the close and far cohort sets for the claimed
speaker respectively.

In the case of our experiments we chose close and far cohorts
sets of 5 speakers each from initial groups of 10 close and 10 far
speakers. Hence our final cohort set contained 10 speakers.

4. AUDIO-VISUAL FUSION SYSTEM

4.1. System Structure

Two main approaches can be taken for fusion, being that ofdi-
rect fusion, andoutput fusion [8]. In direct fusion features from
each source are combinedprior to classification, whereas in out-
put fusion, features from each source are separately classified, with
the classifier outputs then being combined. Past research [9] has
shown thatoutputfusion is in general superior for audio and visual
fusion.

The basic structure of our fusion system is that ofasyn-
chronous linear outputfusion. Here the verification decisionH
is based upon a linear combination of outputs from the audio and
visual classifiers. This can be expressed for the general case [10]
as:

assign H ! Hj for j = 0; 1 if

�P (Hj jXaud) + (1� �)P (Hj jXvis) =

= max
k�[0;1]

f�P (HkjXaud) + (1� �)P (HkjXvis)g (7)

whereH0 andH1 are theacceptand reject classes respec-
tively, Xmode are the input features,� 2 [0; 1], and we assume
thea priori class probabilitiesP (H0) andP (H1) are equal.

Rather than attempting to compute thea posteriori proba-
bilities P (HkjXmode) the verification decision is based upon a
speaker independent thresholding of cohort normalised scoresu
from each modality. This can be expressed mathematically as:

assign H ! H0 if

�:u(Xaudjsclaim) + (1 � �)u(Xvisjsclaim) � T (8)

assign H ! H1 if

�:u(Xaudjsclaim) + (1 � �)u(Xvisjsclaim) < T (9)

whereT is the score threshold value, andu(Xmodejsi) are
defined in Equation 6.

Thus we first calculate the cohort normalised scores for each
modality, and then combine these scores via a linear weighting
before thresholding the final value.

4.2. Determination of Optimal Classifier Weightings

In any classification system, the output probability is really an es-
timate of the truea posterioriprobability with an associated error
factor. Hence we can express the output estimateP̂ (HkjXi) as:

P̂ (HkjXmode) = P (HkjXmode) + �mode (10)

wheremode � [aud; vis] andk � [0; 1].
We seek to find a way to automatically allocate the optimum

weighting� 2 [0; 1] to classifiers so as to minimise the error con-
tributions�mode, to the overall verification problem. To determine
the resulting confidences for each classifier, we treat the problem
as a large-sample test of the hypothesis for the difference between
two sample means. In our case, the two sample means�0 and�1



represent the means of the normalised scoresu given true clients
and given true impostors respectively.

Hence we are testing the hypothesis:

H0 :
1

m

mX
i=1

u(Xmodejclienti)�
1

n

nX
i=1

u(Xmodejimposi) � 0

(11)
It can be shown statistically, that thestandard error� for this

estimate is:

�mode = �
mode
�X0�

�X1
=

r
�2
0

m
+

�2
1

n
(12)

wherem andn are the number of client and imposter tests
respectively, and�2

0 and�2
1 are the sample class variances deter-

mined from the training set.
We assume that the standard error for a classifier gives a rela-

tive indication of the ability of the classifier to consistently sepa-
rate client scores and imposter scores. The less variation there is
in client and imposter scores, the lower the standard error for that
classifier will be, and the better the verification performance.

Based on this we determine an ”optimal” value of� as:

assign �
optim

mode ! �mode if �mode /
1

�mode

(13)

wheremode � [aud; vis].
Hence based on the assignment of� in Equation 7, we deter-

mine� as:

� =
�vis

�aud + �vis
(14)

5. EXPERIMENTS

5.1. Experiment Details

We trained and tested the audio and visual verification systems us-
ing the M2VTS multi-modal database [11]. The database consists
of over 27000 colour images of 37 subjects counting fromzeroto
neuf in French over a number of different sessions, with a week
between each session. We used the first three recording sessions
as training data, and the fourth session as test data.

The verification tests consisted of a series of bothfalse re-
jection (FR) tests andfalse acceptance(FA) tests. The first 30
speakers were chosen to be clients, whilst the remaining 7 speakers
were used as impostors only. Cohort speakers for each of the client
speakers were obtained from the other remaining client speakers.
For FR tests, all 30 speakers were used as clients to their own mod-
els resulting in 30 tests. For FA tests each of the 7 impostors were
used against all 30 client models resulting in 210 tests.

One of the key aims of the experiments was to evaluate the ef-
fectiveness of the choice of� as speech data quality was degraded
with noise. Given that the technique for choosing�opt, described
in Section 4.2 is optimised for clean audio and visual data, we de-
liberately change conditions to extreme levels to evaluate system
robustness.

5.2. Results

5.2.1. Audio Tests

In Figure 1 thereceiver operating characteristic(ROC) curves are
presented for the verification system using speech data alone. Each

ROC curve represents verification performance under a particular
level of audio degradation.
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Figure 1: Audio ROC curves

5.2.2. Lip Tests

Figure 2 shows the ROC curve for verification using lip informa-
tion only. For the purposes of these tests, the quality of visual
information has been held constant and not degraded in any way.
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Figure 2: Visual ROC curves

5.2.3. Audio-Visual Fusion Tests

The verification results after fusion of speech and lip information
are presented in Figure 3. The value of� used to form the results
is determined as per Section 4.2. Given clean audio and visual
training data,�opt was calculated to be0:901.

To evaluate how good the choice of�opt is, Figure 4 gives a
comparison of the EER’s for the ”optimal” system with a range of
other values of� 2 [0; 1].

For clean data, the optimal fused system can be seen to main-
tain the speech only EER rate of 0.47%. At very high noise levels,
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Figure 3: Audio-visual ROC curves
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Figure 4: Comparison of EER’s for varying weights

the optimal fused system reduces the EER from 29.0%, for speech
only, to 15.0%.

It can be observed that values of� such as0:70 and0:85 out-
perform the optimal system at high noise levels, however for clean
data the corresponding EER’s for these values of� are 2.4% and
1.0%, which is a step backwards from the excellent performance
using speech only.

Given that a verification system would be ideally operating in
clean or low noise conditions, the choice of�opt = 0:901 made
by the system does indeed appear to be almost optimal. If a sys-
tem were to be continually operating in high noise conditions, we
would need to determine the standard error for audio data�aud
based on highly noisy training data and find the new�opt accord-
ingly.

6. CONCLUSIONS

This paper has presented the use of lip information as a secondary
source of information for robust speaker verification under varying
noise conditions. We have previously shown that speaker depen-

dent lip information can be obtained by classifying the distribution
pattern of features from a speaker’s moving lips over time.

Results show that speaker verification performance using
speech information only, decreases considerably as background
noise increases. The fusion of lip and speech information al-
lows the system performance to remain relatively high even when
speech information is highly degraded.

We present a technique for automatically determining the
weighting of audio and visual classifiers to maximise overall veri-
fication performance over a range of operating characteristics. Re-
sults from experiments are encouraging and show that the tech-
nique is able to select a value of� to match the excellent per-
formance, in clean conditions, of speech-only verification, whilst
greatly improving results over speech-only in high noise.
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