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ABSTRACT

This paper addresses the problem of blind equalization
for digital communications using an array of sensors at the
receiver to copy constant modulus signals in the presence of
heavy-tailed additive channel noise. First, we demonstrate
the negative e�ects of channel noise to the original CMA
cost function in terms of convergence. Then, we introduce
a new CMA criterion based on the fractional lower-order
statistics (FLOS) of the received data. The proposed crite-
rion is able to mitigate impulsive noise at the receiver and
at the same time restores the constant modulus character
of the transmitted communication signal. We perform an
analytical study of the properties of the new cost function
and we illustrate its convergence behavior through com-
puter simulations.

1. INTRODUCTION

In digital communication systems, the antenna receiver must
be able to estimate the information sequence in severe in-
terference backgrounds. As a result, the problem of co-
channel signal suppression has been the focus of consider-
able research in the signal processing and communications
communities. In the mid sixties, Lucky and Austin devel-
oped a technique for sub-optimal receivers which used linear
equalizers in order to bring the �lter output as close as pos-
sible to the transmitted symbol sequence [1, 2]. In addition,
Widrow introduced an adaptive equalizer which automat-
ically adjusts the �lter coe�cients to optimize a speci�ed
performance index and to compensate for time variations
in the channel characteristics [3]. The blind equalizer pro-
posed by Sato in the seventies used the same main concept
of updating the weights, but it was based on an initial ad-
justment of the coe�cients without the bene�t of a training
sequence [4].

The Constant Modulus Algorithm (CMA) was studied
by Treichler and Larimore [5, 6] who analyzed its perfor-
mance in terms of capture and lock behavior. Initial CMA
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studies considered only the temporal diversity at the re-
ceiver. The development of advanced division access tech-
niques has made the concept of spatial diversity worth-
pursuing. As a consequence, directional array antenna beam-
formers have taken the place of omnidirectional antennas.
In this context, Gooch and Lundel introduced the so-called
constant modulus array, which exploits the constant mod-
ulus properties of the communication signal of interest to
steer a beam in the direction of the information sequence
while placing nulls in the directions of interferences [7].

Most of the theoretical work on blind equalizers based
on the CM criterion has assumed the absence of additive
channel noise or it has focused on the case where the chan-
nel noise is assumed to follow the Gaussian model [8]. The
Gaussian assumption is frequently motivated because it of-
ten leads to mathematically tractable solutions. However
algorithms designed under the Gaussian assumption ex-
hibit various degrees of performance degradation, depend-
ing on the non-Gaussian nature of the environment. For
this reason, there is a need to use more general and real-
istic non-Gaussian models and design robust equalization
techniques that take into account the possible heavy-tail
nature of the data. Indeed, experimental results have been
reported where electromagnetic noise in urban mobile-radio
channels is heavy-tailed in nature and cannot be modeled
by means of Gaussian or other exponential-tailed distribu-
tions [9, 10]. In addition, impulsive channels appear in
telephone lines, underwater acoustic communications (ice-
cracks), atmospheric environments (thunderstorms), and
mobile communications.

The presence of heavy-tailed noise together with the de-
sired signal has a negative e�ect on the conventional CMA
performance in terms of its convergence behavior. Our work
is devoted to the development of a novel constant modulus
array signal processing algorithm for robust performance
in the presence of interference/noise environments that can
be modeled according to the alpha-stable law. The new
method is based on the constant modulus property of the
Fractional Lower-Order Statistics (FLOS) of the signal of
interest and is able to handle robustly the presence of heavy-
tailed noise and interference in the data. In the absence of
noise, the performance of the proposed method is the same
with that of the original CMA.



2. CONSTANT MODULUS ARRAYS BASED

ON FLOS

2.1. Statistical Models for Heavy-Tailed Noise

Man-made as well as natural physical processes can gen-
erate interferences containing noise components that are
impulsive in nature. In modeling this type of signals the
symmetric alpha-stable (S�S) distribution provides an at-
tractive theoretical tool. It was proven that under broad
conditions, a general class of heavy-tailed noise follows the
stable law [11].

The S�S class of distributions is best de�ned by its
characteristic function:

'(!) = exp(|�! � j!j�); (1)

where � is the characteristic exponent restricted to the val-
ues 0 < � � 2, � (�1 < � <1) is the location parameter,
and  ( > 0) is the dispersion of the distribution. The dis-
persion parameter  determines the spread of the distribu-
tion around its location parameter �, much in the same way
that the variance of the Gaussian distribution determines
the spread around the mean. The characteristic exponent
� is the most important parameter of the S�S distribution
and it determines the shape of the distribution. The smaller
the characteristic exponent � is, the heavier the tails of the
alpha-stable density. It is this heavy-tail characteristic that
makes the alpha-stable densities appropriate for modeling
noise that may be impulsive in nature. We should also note
that the stable distribution corresponding to � = 2 coin-
cides with the Gaussian density.

The appeal of S�S distributions as statistical models
derives from some important properties. They: (i) natu-
rally arise as limiting processes via the Generalized Central
Limit Theorem; (ii) possess the stability property and share
many features with the Gaussian density such as unimodal-
ity, symmetry with respect to the location parameter, bell-
shape; (iii) possess �nite moments of order p only when p

is strictly less than �: EjXjp <1 for p < �.

2.2. Blind Equalization with CMA Arrays

The constant modulus family of blind equalizers is based
on a cost function that assigns a penalty to deviations in
the modulus of the controller's complex output signal. The
cost function is given by

J
CM
pq = E[ j jj y(n) jjp �� jq ] (2)

where E[�] denotes statistical expectation, y(n) is the con-
troller output at time n, p and q are positive integers, and
� is a constant greater than zero.

The most famous member of this family is the Constant
Modulus Algorithm (CMA) for which both parameters p

and q are equal to two [5, 6]. CMA has been used in a frac-
tionally spaced context. Recent work has exploited channel
diversity to achieve perfect equalization in noise free en-
vironments. Initially, channel diversity referred mainly to
the temporal domain and was produced by oversampling
the received analog signal in time. But spatial diversity
has also been used by employing an array of sensors at the
receiver [7].

Consider an array of N equispaced sensors, which re-
ceive signals generated by Q sources located at #1; : : : ; #Q.
Assuming the signal bandwidth to be narrow as compared
to the inverse of the travel time across the array, it follows
that, by using a complex envelop representation, the array
output can be expressed as:

x(t) = A(#)s(t) + n(t); (3)

where x(t) = [x1(t); : : : ; xN (t)]
T is the array output vector;

s(t) = [s1(t); : : : ; sQ(t)]T is the signal vector received by the
reference sensor of the array; A(#) is the N�Q steering ma-

trix, whose rth column vector a(#r) is [1; e
�|2�(d=�)sin#r ; : : : ;

e�|(N�1)2�(d=�)sin#r ]T and n(t) = [n1(t); : : : ; nN (t)]
T is the

noise vector.
The CMA attempts to minimize the cost function shown

in (2) by following the path of steepest descent. By letting
the array weights at time n be given by the vector w(n),
the update equation for the p = 2 and q = 2 case is given
by

w(n+ 1) = w(n)� �x(n)��(n) (4)

�(n) = y(n)ky(n)k2 � y(n) (5)

y(n) = w
H(n)x(n) (6)

2.3. The FLOS-CMA Array

The main characteristic associated with the classical CMA
is that it involves fourth-order moments of the signal. In the
presence of heavy-tailed noise, the use of second- or higher-
order statistics in e�ect ampli�es the noise. For such cases,
we propose a new cost function that considers information
of constant modulus regarding the communication signals
and uses FLOS to mitigate the impulsive noise component.
The new cost function has the expression

J
FLOS�CMA
p;q = E

h �� jj y(n) jj(p�1)
y(n)� �y(n)

��q i
(7)

where y(n) is the array output and � is a real representing
the constant signal modulus. The pair (p; q) takes values,
possibly fractional, between 0 and �, where � is the charac-
teristic exponent of the alpha-stable distribution that best
describes the statistics of the noise vector n(t). Further-
more, the product p � q must be less than �.

First, we develop the recursive update formula for the
array weights using the principle of steepest descent to mini-
mize the proposed cost function in (7) (for a complete treat-
ment see [12]).

w(n+ 1) = w(n)� �rw�Jpq

= w(n)� �
q

2
jj �A jjq�2

x(n)(p jj y(n) jjp�1 �1) �A�(8)

where
�A = y(n)

�
jj y(n) jjp�1 �1

�
(9)

Naturally, the convergence behavior of the FLOS-CMA al-
gorithm is an important issue when more that one constant
modulus signals are present. In [12], we address the lock
and capture properties of the new criterion by �nding the
expression of the curve boundaries that divide the two zones
in positive lock zone and positive capture zone. Figure 1
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Figure 1: FLOS-CMA: Lock and capture boundaries for
di�erent SIR values.

depicts the lock and capture boundaries for a CM signal
and a CM interference, for several signal-to-interference ra-
tios (SIR). The FLOS-CMA array locks onto the CM signal
of strongest initial power at the array output.

2.4. Experimental Results

In this section, we test and validate the new FLOS-CMA
adaptive beamformer and compare its performance with
that of the conventional CMA array in a noisy environ-
ment. Four transmitted signals impinge on the array from
directions � = [30o;�40o; 60o;�15o]. The number of snap-
shots available to the array is M = 10; 000. The SNR is
10dB and the noise component is modeled as an alpha-
stable process with � = 1:85, i.e., the noise is fairly close to
Gaussian. We plot the output path of each signal (cf. Fig-
ure 2), the beampatterns after convergence (cf. Figure 3),
and the constellation plot of the array output signal at con-
vergence (cf. Figure 4) for both the original CMA and the
proposed FLOS-CMA algorithms.

Figure 2 demonstrates that occurrences of noise outliers
during the adaptation, have an adverse a�ect to the learning
curve of the original CMA method. On the other hand, the
proposed FLOS-CMA cost function can suppress the noise
components and results in a much smoother learning curve.
Naturally, the improved performance of the FLOS-CMA
is also demonstrated by comparing the adapted beampat-
terns in Figure 3. It is apparent that only the FLOS-CMA
array places nulls in the directions of the three multipath
signals at �40o, 60o, and �15o. Finally, Figure 4 demon-
strates that the received vectors of the adapted FLOS-CMA
method are tightly clustered about the four constellation
points, while the signal constellation of the original CMA
appears as a random scatter of points.

3. DISCUSSION

We proposed a new method for blind equalization of com-
munication signals using a constant modulus criterion based
on fractional lower-order statistics. The introduced FLOS-
CMA array exploits the constant modulus property of the
signal of interest and uses the heavy-tailed noise suppres-
sion capabilities of FLOS to steer a beam in the direction
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Figure 2: Convergence behavior of output amplitudes. (a):
CMA, (b): FLOS-CMA.

of the signal while suppressing interference and noise. The
main advantage of the proposed method is its robustness
in the presence of various noise environments. Truly, by
changing the parameters p and q in the criterion in (7)
we obtain a class of FLOS-based CMA beamformers which
provides considerable exibility that can be useful for op-
timization purposes in the presence of nonstationary noise
environments.

The proposed method developed using FLOS has ap-
proximately the same computational complexity as the ex-
isting CMA methods. The additional computational load
is due to the need for calculating a fractional power (p < 2)
rather than a square power. The technique can be used in
commercial communication applications in which impulsive
channels tend to produce large-amplitude interferences and
sharp noise spikes more frequently than what is expected
from Gaussian channels.
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Figure 3: Beampattern of the array after adaptation. (a):
CMA, (b): FLOS-CMA.
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