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ABSTRACT

This paper considers the problem of estimating the phase pa-
rameters of a linear FM signal which is modulated by a random
process and is embedded in additive noise. In particular, we con-
sider the use of cyclic moments and derive variance expressions
for the phase parameter estimates for all values of the lag pa-
rameter of the second order cyclic moment,� . It is seen that the
accuracy of the phase parameter estimates depends greatly on� .
This allows the definition of an optimal value of� , in the sense
that it minimises the phase parameter estimation variance.

1. INTRODUCTION

Signals which have been subject to an amplitude modulation
and/or a frequency modulation are frequently encountered in ap-
plications such as radar and sonar. In the presence of additive
noise, the discrete-time model of such signals is

Xt = Atst +Wt = Ate
j�t +Wt; t = 0; 1; : : : ; T � 1: (1)

We will be considering a special case of this signal model where,

A1. the signal phase can be expressed as a quadratic function of
time,

�t = a1t+ a2t
2; t = 0; 1; : : : ; T � 1; (2)

A2. At is a real stationary i.i.d. random process with mean�a
and finite variance�2a.

A3. Wt is a complex stationary white Gaussian random process,
independent ofAt, with variance�2w.

Given observations,xt, t = 0; 1; : : : ; T � 1, from the signal
model (1), we wish to estimate the phase parameters,a1 anda2.

Under the assumptionsA1-A3, the signal model (1) is an
appropriate model for radar and sonar return signals. In radar,
target returns often exhibit non-linear phase characteristics due
to the varying radial velocity of the target [9]. A constant radial
velocity results in a linear phase shift, while a constant radial ac-
celeration results in a quadratic phase shift. Thus by estimating
the phase parameters of the return signal it is possible to obtain
information about the velocity and acceleration of the target. The
random amplitude is a result of the changing orientation of the
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target and is termed time-selective fading [12]. A similar situa-
tion exists in sonar where target motion and ocean effects give
rise to signals of the type shown in (1) [11].

Most techniques for estimating the phase parameters of FM
signals assume a constant amplitude i.e.At � A, t = 0; 1; : : : ; T�
1. Techniques which employ this assumption include the poly-
nomial phase transform (PPT) [7], the integrated generalised am-
biguity function [1], the polynomial Wigner-Ville distribution
[2] and the least-squares method [5]. The random amplitude case
has received substantially less attention. In [6] techniques were
proposed for differentiating between constant and random am-
plitude polynomial phase signals. Boashash and Ristic showed
that the Wigner-Ville trispectrum can be used to estimate the in-
stantaneous frequency of random amplitude linear FM signals
[3]. Shamsunderet al. proposed a phase parameter estimation
procedure based on cyclic moments [10], but did not investigate
the statistical properties of the estimates obtained. In this pa-
per we present a statistical analysis of the estimates of the phase
parameters,a1 anda2 obtained from the cyclic moments and
establish the conditions under which these estimates are opti-
mal. In particular, it is shown that the choice of lag parameter,
� , greatly affects the accuracy of the phase parameter estimates.

The paper is structured as follows. Section two presents a
review of the estimation procedure proposed in [10]. In section
three the variance expressions for the phase parameter estimates
are presented. From these results the optimal value of� is found.
The computed variances are confirmed using numerical simula-
tions. The paper concludes with a discussion of the results ob-
tained.

2. CYCLIC MOMENTS

In order to illustrate the use of cyclic moments for estimating
the phase parameters of the signal (1) we initially setWt � 0,
t = 0; 1; : : : ; T � 1. The second order moment of the signalXt
is defined as,

m2x(t; �)
4
= EX

�
tXt+� : (3)

Under the assumptionsA1 andA2, the second order moment is a
constant amplitude sinusoid. The periodicity of the second order
moment permits the generalised Fourier series expansion,

m2x(t; � ) =
X
�2A2x

M2x(�; � )e
j�t
; (4)



M2x(�; � ) = lim
T!1

1

T

T�1X
t=0

m2x(t; �)e
�j�t

; (5)

whereA2x = f� : M2x(�; � ) 6= 0g. The generalised Fourier
series coefficients,M2x(�; �), are called the second order cyclic
moments and the signal (1) is said to exhibit second order cyclo-
stationarity. The phase parameter,a2, can then be found as

a2 =
argmax

�
fjM2x(�; �)j

2g

2�
(6)

The lower order phase parameter,a1, can then be found by de-
modulating the original signal with the calculated value ofa2
and taking the cyclic mean of the demodulated signal,

M1x(1)(�) = lim
T!1

1

T

T�1X
t=0

EX
(1)
t e

�j�t
; (7)

whereX(1)
t = Xte

�ja2t
2

. The phase parameter is found as the
peak of the cyclic mean,M1x(1)(�). It is important to note that
the phase parameters must satisfy the criteria

jamj �
�

m!�m�1
; m = 1; 2: (8)

We consider now observations,xt, t = 0; 1; : : : ; T�1, obtained
from the full signal model (1) under assumptionsA1-A3. From
this single realisation we wish to estimate the phase parameters,
a1 anda2. This can be done using the following estimate of the
second order cyclic moment,

M̂2x(�; �) =
1

T

T���1X
t=0

x
�
txt+�e

�j�t (9)

The cyclic mean is estimated in an analogous manner. These
cyclic moment estimates are asymptotically consistent [4]. The
phase parameter estimation procedure is then

1. Estimatea2 as

â2 =

argmax
�6=0

fjM̂2x(�; �)j
2g

2�
: (10)

2. Form the demodulated signal,

x
(1)
t = xte

�jâ2t
2

; t = 0; 1; : : : ; T � 1: (11)

3. Estimatea1 as

â1 = argmax
�6=0

fjM̂1x(1) (�)j
2g: (12)

In the following section the variance of the estimates will be
established for all values of the lag parameter,� .

3. STATISTICAL ANALYSIS

This section is devoted to an analysis of the variance expressions
obtained for the phase parameter estimates, (10) and (12). This
analysis is asymptotic in the sense that it is assumed thatT is
large and that�2a and�2w are small compared to�a. The proofs
for the variance expressions can be found in the appendix.

Under assumptionsA1-A3 the variances of the phase param-
eter estimates are

varfâ2g � (13)

3

2� 2L(L2 � 1)

�
2 +

�2w + 2�2a
�2a

�
2(L � � )(L2 � 2L� � 2�2)

L(L2 � 1)
uT�2�

�
�2w
�2a

varfâ1g � (14)

3T 2

2� 2L(L2 � 1)

�
2 +

�2w + 2�2a
�2a

+
4� 2L(L2 � 1)

T 5

�
2(L� �)(L2 � 2L� � 2�2)

L(L2 � 1)
uT�2�

�
�2w
�2a

where� = 1; : : : ; T � 2,1 L = T � � andut = 1, t � 0.
Inspection of (14) and (15) reveals the following points,

� the variances of the estimates (10) and (12) display simi-
lar characteristics as the lag parameter,� , varies. This is
to be expected since the accuracy ofâ2 will directly affect
the accuracy of̂a1.

� the variances increase as the variance of the modulating
process and/or the variance of the additive noise increase.

A closer examination of the variance expressions will now be
conducted. We plot the variance of each phase parameter esti-
mate against� for the caseT = 128, �a = 5

4
, �2a = 1

8
, �2w = 1

3

andAt is an i.i.d. Rayleigh random process. The plots are shown
in Figures 1 and 2. The computed variances are compared with
estimated variances obtained using 1000 realisations of the sig-
nal model (1) witha1 = 1

8
anda2 = 1

4096
.
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Figure 1: Variance of�â2.

From the figures we see that both of the variances are min-
imised when� = T

2
= 64. It can also be seen that the computed

variances correspond closely to the estimated variances. It can
be shown that for general values ofT , the situation observed
here holds and the optimal value of� is T

2
, providedT is even.

1Only positive values of� are considered as only the absolute value
of � is of importance i.e. estimates obtained for� = 1 and� = �1 are
statistically equivalent.
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Figure 2: Variance of�â1.

The variances of the phase parameter estimatesâ2 and â1 are
thenO(T�5) andO(T�3) respectively. In the event thatT is
odd, the optimal value of� is T+1

2
.

4. DISCUSSION

In the above sections the variances of the phase parameter esti-
mates obtained from the cyclic moments were derived. It was
shown that the value of the lag parameter,� , chosen to compute
the estimated second order cyclic moment, (9), greatly affects
the accuracy of the phase parameter estimates, (10) and (12). In
particular, it can be seen from (14) and (15) that the variances
will be minimised when we choose� = T

2
. This is the same

result as that obtained when using the PPT to estimate the phase
parameters of constant amplitude linear FM signals in additive
white Gaussian noise. This correspondence is perhaps not that
surprising, as the estimate of the second order cyclic moment
is nearly identical to the second order PPT. The variance ex-
pressions were verified using numerical simulations, as shown
in Figures 1 and 2.

Future work will extend the signal model considered to higher
order polynomial phase signals and investigate the effect of cor-
relation in the random modulating process.
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6. APPENDIX: DERIVATION OF VARIANCES

In this appendix the variance expressions (14) and (15) are de-
rived. Throughout the analysis we will refer to the signal model
and assume thatA1-A3 are satisfied.

6.1. Variance ofâ2

The second order cyclic moment of the sequence�ast is given
by

M̂2�s(�) =
�2ae

j (�)

T

L�1X
t=0

e
�j(��2a2�)t; (15)

where (�) = a1�+a2�
2. The perturbation due to the presence

of the random amplitude modulation and additive noise is

�M̂2�s(�) = M̂2x(�)� M̂2�s(�) (16)

=
1

T

L�1X
t=0

s
�
t st+�

��
At +

W �
t

s�t

�

�

�
At+� +

Wt+�

st+�

�
� �2a

�
e�j�t(17)

=
ej (�)

T

L�1X
t=0

�t;�e
�j(��2a2�)t (18)

The peak off2�s(�) = jM̂2�s(�)j
2 occurs at�0 = 2a2� . A

first order perturbation analysis shows that the shift in the loca-
tion of the peak can be approximated as [8]

��0 � �

@� f2�s(�0)

@ �
@2f2�s(�0)

@ �2

(19)

It can then be shown that

@2f2�s(�0)

@ �2
= �

�4a
6T 2

L2(L2 � 1) (20)

and

@� f2�s(�0)

@ �
�
�2aL

T 2
Im

(
L�1X
t=0

(L� 1� 2t)��t;�

)
(21)

Therefore

�â2 �

3 Im

(
L�1X
t=0

(L� 1� 2t)��t;�

)

��2aL(L2 � 1)
(22)

It is then straightforward to show thatE�â2 � 0. The second
order moment is

E (�â2)
2 � �

9

4� 2�4aL2(L2 � 1)2

�

L�1X
t=0

L�1X
n=0

(L� 1� 2t)(L� 1� 2n) (23)

�E (�t;��n;� � 2�t;� �
�
n;� + �

�
t;� �

�
n;� )

UnderA2 andA3 we obtain

E �t;� �n;� � 2E �t;��
�
n;� +E �

�
t;� �

�
n;� = (24)

�2�2w(�
2
w + 2�2a + 2�2a)�t�n + 2�2a�

2
w(�t�n+� + �t�n�� )

The summations can then be found as

L�1X
t=0

L�1X
n=0

(L� 1� 2t)(L� 1� 2n)�t�n =
L(L2 � 1)

3
(25)



and

L�1X
t=0

L�1X
n=0

(L� 1� 2t)(L� 1� 2n)�t�n+� =

L(L2 � 1) + 2� 3 + � � 3L2�

3
ut�2� (26)

The summation associated with�t�n�� is also given by (26) due
to symmetry. We then substitute (24) into (23) and use (25) and
(26) to obtain the variance expression (14).

6.2. Variance ofâ1

In order to estimatea1 we consider the demodulated signal,

X
(1)
t = Xte

�jâ2t
2

(27)

= Ate
ja1te�j�â2t

2

+Wte
�j(a2+�â2)t

2

(28)

Since the error in�â2 isO(T�3) we can use the approximation

e�j�â2t
2

� 1 � j�â2t
2 to obtain

X
(1)
t � Ate

ja1t(1�j�â2t
2)+Wte

�ja2t
2

(1�j�â2t
2) (29)

The noiseless demodulated signal is�as
(1)
t = �aste

�ja2t
2

=
�ae

ja1t. The perturbation in the cyclic mean is then

�M̂1�s(1) = M̂1x(1) (�)� M̂1�s(1) (�) (30)

=
eja0

T

T�1X
t=0

�
At(1� j�â2t

2) +
Wt

s
(1)
t

e
�ja2t

2

�(1� j�â2t
2)� �a

�
e�j(��a1)t (31)

=
eja0

T

T�1X
t=0

�te
�j(��a1)t (32)

Using the same first order perturbation method as used for the
variance of̂a2, we obtain

�â1 �

6 Im

(
T�1X
t=0

(T � 1� 2t)��t

)

�aT (T 2 � 1)
(33)

It can be shown without too much difficulty thatE�â1 � 0.
The second order moment is

E (�â1)
2 � �

9

�2aT 2(T 2 � 1)2

�

T�1X
t=0

T�1X
n=0

(T � 1� 2t)(T � 1� 2n) (34)

�E (�t�n � �n�
�
t � �

�
n�t + �

�
n�
�
t )

We can evaluate this expression by substituting the approxima-
tion of�â2, (22), into the expression for�t, (see (31) and (32)).
This will result in a large number of terms but the working can
be considerably reduced by considering only the highest order
terms. Since we are assuming large values ofT , this is a valid
approximation and will also make it easier to draw meaningful

conclusions from the final result. The highest order terms are
then

E (�â1)
2 �

9

�2aT 2(T 2 � 1)2
(35)

�

(
9

4� 2�2aL2(L2 � 1)2

T�1X
t=0

T�1X
t=0

L�1X
k=0

L�1X
r=0

t
2
n
2

�(T � 1� 2t)(T � 1� 2n)(L� 1� 2k)(L� 1� 2r)

�8�2a�
2
w(2�

2
a�k�r � 2�2a�k�r+� + �

2
w�k�r + 2�2a�k�r)

+2�4w

T�1X
t=0

T�1X
n=0

(T � 1� 2t)(T � 1� 2n)�t�n

)

The summations can then be evaluated and after some algebraic
manipulation, the variance of̂a1 is found as shown in (15).
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