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ABSTRACT

The recent convergence of applications (Internet and embedded
applications) and technology (reuse and very high integration level)
trends resulted in a strong need for design of soft real-time DSP
systems on silicon. We developed a new hierarchical modular ap-
proach for synthesis of area efficient soft real-time DSP systems
on silicon. This synthesis strategy employs a number of optimiza-
tion intensive scheduling, performance monitoring, and allocation
steps. The backbone of the optimization approach is a novel on-
line scheduling algorithm which uses meta-algorithmic techniques
for on-the-fly heuristic selection and parameter tuning. Resource
allocation refers to a predetermined lower-bound system perfor-
mance, to perform a branch-and-bound resource allocation search
for an area-efficient multiprocessor configuration where each pro-
cessor has local instruction and data cache.

In order to bridge the gap between the profiling, modeling,
and synthesis tools of the two traditionally independent synthesis
domains (architecture and CAD), we develop a new synthesis and
evaluation platform which integrates the existing modeling, pro-
filing, and simulation tools with the new developed system-level
synthesis tools. The effectiveness of the approach is demonstrated
on the industrial strength MediaBench benchmark suite.

1. INTRODUCTION

The recent convergence of DSP, multimedia, and communica-
tion applications has emerged intensive signal processing and high
volume data management application-specific systems. Due to
the ever-changing communication and signal processing standards,
most of these systems are preferably programmable. The immense
growth of various Internet applications, such as video/audio format
conversions and streaming, Internet telephony, video/audio data
retrieval, etc. has created the high demand for embedded soft real-
time systems. The trend of increasing application processing vol-
ume and available task-level parallelism has made multiprocessor
DSP systems a must [Olu97]. For example, most ISDN, ADPCM,
and 830020 cards address the issue of remote LAN access, com-
puter integrated telephony, RF signal processing, video conferenc-
ing, bandwidth management, disaster recovery, etc.

To address the semiconductor technology trends and the need
for programmable DSP multiprocessor platforms, we developed a
new hierarchical modular approach for synthesis of area-minimal
DSP server systems-on-silicon (SOS). A typical multiprocessor
core-based system consists of a number of processor systems where
each system comprises a programmable core, instruction and data
cache cores, and a number of hardware DSP accelerators and con-
trol blocks as depicted in Figure 1. The role of controlling the
DSP system is dedicated to one of the processing elements (mas-
ter), while the other processors are executing tasks in the slave
mode. Numerous application-specific systems’ manuals and doc-
uments outline that most of the SOS area is dedicated to the pro-

cessor cores and associated caches [Mic97]. Therefore, the synthe-
sis strategy employs a branch-and-bound search for an SOS with
minimal chip area dedicated to the programmable and cache cores.
The resulting configuration is required to satisfy a predetermined
set of system processing throughput requirements with respect to
an expected input datastream. In order to improve the number
of serviced soft real-time requests, we developed a novel heuris-
tic for task on-line scheduling which employs meta-algorithms for
on-the-fly parameter adjustment.
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Figure 1: A typical multiprocessor SOS.

In order to bridge the gap between the profiling and model-
ing tools from the two traditionally independent synthesis domains
(architecture and CAD), we developed a new synthesis and eval-
uation platform. We used SHADE [Cme94] as an instruction-set,
and DINEROIII [Hill89] as a cache simulator for trace-driven sys-
tem simulation to accurately evaluate performance of cache sub-
systems for the MediaBench suite [Lee97]. The Stanford on-line
Cache Design Tool (CDT) was used to estimate cache access la-
tency and area based on properties such as cache total size, line
size, semiconductor feature size, replacement policy, and associa-
tivity [Fly96]. Data extrapolated from the available literature for
commercial programmable cores was used as a simplified model to
approximate processor core performance with respect to its area.
The effectiveness of the approach is demonstrated on the industrial
strength MediaBench benchmark suite.

2. PREVIOUS WORK
The related work can be traced through areas of application-

specific system optimization, processor and memory hierarchy de-
sign and evaluation, and soft real-time systems.

SOS is becoming an important focus area for both research
and commercial developers [Bol94]. Shortened design cycles, due
to market pressure, have encouraged usage of predesigned proces-
sor cores. Market pressure to reduce system cost for consumer
products has spurred the development of system level synthesis
techniques [Wol94]. As embedded applications have become more
sophisticated and commercially relevant, hardware-software code-
sign and techniques for system-level synthesis have also become



increasingly important [Gup93, Gaj94].
The increased interest in embedded system design with reusable

core components has encouraged the development of high-level
ASIC architecture evaluation models. For example, The Micropro-
cessor Report presents a monthly summary of the area and perfor-
mance of numerous commercial processors [Mic97]. Instruction
and data caches, as the highest level of memory hierarchy, have
been thoroughly studied [Hill89, Jou93].

The conceptual advantages and disadvantages of hard, soft,
and hybrid real-time systems have been described in [Rze94]. The
development of scheduling techniques for soft real-time systems
has been reported in [Kao93, Kao94]. The performance impli-
cations of using different static processor allocation strategies in
serving soft real-time requests has been studied in [Car94]. Imple-
mentation issues of various scheduling heuristics at the operating
system level have been discussed in [Ade94].

3. PRELIMINARY DISCUSSION

In this section we describe the hardware performance models
for caches and processor cores. Three factors combine to influence
the execution performance of a processing element: cache miss
rate, CPU performance, and CPU clock speed. The approach that
we use here is to leverage existing models to estimate the area and
performance of both cache and processor cores. This approach
allows the synthesis approach to be rapidly updated and applied to
new environments with new technology.

The CDT is used to evaluate the impact of cache design choices
on area and access time. Caches typically found in current embed-
ded systems range from 128B to 32KB. Since higher associativ-
ity results in significantly higher access time, here we consider
only direct mapped, and 2-way set associative caches. We use
cache line size fixed to 32 bytes. This decision attempts to elimi-
nate the well known cache penalty tradeoff problem. Large cache
lines generally result in increased latency when fetching from main
memory, while short cache lines increase access latency due to
greater control hardware. We estimate the cache miss penalty
based on the operating frequency of the system, external bus width,
and clock for each system investigated. This penalty ranges be-
tween 4 and 20 system clock cycles. Write-back was adopted as
oppose to write-through, since it is proven to provide superior per-
formance [Jou93] though at increased hardware cost. Each of the
processors considered is constrained by the Flynn limit, and thus
is able to issue at most a single instruction per clock period. Thus,
the caches were designed to have a single access port. A sample
overview of the estimated cache model is presented in Table 1.
Cache access latency and area is computed for a number of orga-
nizations and sizes, all with implementation feature size fixed at
0.5�m and typical six transistors per CMOS SRAM cell.

Assoc- Area Cache size
iativity Latency 1KB 2KB 4KB 8KB 96KB
Direct mm2 2.11 3.81 7.20 13.96 161.7

Mapped ns 3.79 3.97 4.16 4.51 6.79
2-way mm2 2.38 4.02 7.29 13.80 156.1

ns 5.67 5.75 5.94 6.23 8.54
4-way mm2 3.04 4.65 7.85 14.25 154.0

ns 6.04 6.24 6.34 6.58 8.83

Table 1: A sample of the cache area and latency data.

Microprocessor performance and area information was culled
from datasheets as well as from the CPU Center Info web site
[Cpu]. A sample of the collected data is presented in Table 2. The

area dedicated to the cache subsystem in a programmable embed-
ded processor can be observed from the last two rows in Table 2,
where data for two commercial chips is presented.

Microprocessor Clock MIPS Feature Area
MHz �m mm2

StrongARM 233 266 0.35 4.3
ARM, 7 40 36 0.6 5.9

ARM, 9 TDMI 150 165 0.35 4
LSI Logic, TR4101 80 30 0.35 2
LSI Logic, CW4001 60 53 0.5 3.5
LSI Logic, CW4011 80 120 0.5 7

DSP Group, Oak 80 80 0.6 8.4
NEC, R4100 40 40 0.35 5.4

Toshiba, R3900 50 50 0.6 15
Motorola, M-core 50 48 0.35 2.2

ARM 710 (ARM7 / 8KB) 40 72 0.6 34
SA-110 (StrongARM / 32KB) 200 230 0.35 50

Table 2: A sample of the processor performance vs. area data.

The task model that we adopt is described using the following
assumptions. First, there exists a limited number of task occur-
rences in the system. Upon arrivala(T ), each taskT is assigned a
real-time constraint, deadlined(T ). The available time for execu-
tion of the task,d(T )�a(T ), is equal or greater than the timer(T )
required to execute the task on the fastest processing element (PE).
The execution slack for each tasks(T ) equalsd(T )�a(T )�r(T ).
Each task type is statically partitioned into sequentially dependent
subtasks where each subtask can be executed on a different PE.
A task is serviced if all its subtasks are serviced. System inabil-
ity to service a task is acceptable. Task arrival and system load
are unpredictable. Due to high context-switching overhead, sub-
task execution on a PE is non-preemptive. The goal is to minimize
the number of missed deadlines in the system. Such soft real-time
system is typical for many communication and financial transac-
tion applications [Ade94].

4. THE NEW SYSTEM LEVEL SYNTHESIS APPROACH
Figure 2 illustrates the synthesis framework. In this section

we describe the role of each optimization and simulation module
and how modules are combined into a tightly integrated synthesis
system. The branch-and-bound search for the area-minimal multi-
processor configuration iteratively generates different CURRENT
architectures. The performance of each PE in CURRENT is eval-
uated using the simulation platform which consists of processor
and cache models, SHADE and DINEROIII simulators, and Me-
diaBench executable and data inputs. The performance of each PE
in CURRENT is fed to the core system performance optimization
process: the on-line soft task scheduling algorithm. The developed
algorithm, having the system architecture, individual performance
of each PE, benchmark input data stream, and required soft task
service rate, evaluates whether the CURRENT application satis-
fies the soft real-time system requirements. The report on CUR-
RENT’s performance estimation is returned to the resource alloca-
tion algorithm which augments this information in the pessimistic
bounds of the search engine. The conveyed report comprises in-
formation on the unsuccessful soft task services by each PE.

System performance is evaluated using a platform which inte-
grates simulation, modeling, and profiling tools. SHADE is a trac-
ing tool which allows users to define custom trace analyzers and
thus collect rich information on runtime events. SHADE dynam-
ically translates the executable binary program into host machine
code. The tool also provides a stream of data to the translated code
which is directly executed to simulate and trace the original ap-
plication code. We use SHADE to trace memory references while



executing code from the MediaBench suite. The stream of refer-
ences is piped to DINERO for cache simulation for each PE.

Apps: MEDIABENCH Data: MEDIABENCH CPU and cache model
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Figure 2: The hierarchical modular synthesis approach.

The final PE performance is computed using the following for-
mula:

CyclesPerInstruction = SystemClockFrequency

MIPS
+

CacheMissRatio � CacheMissPenalty

whereCacheMissRatiowas computed during the trace driven
simulation of the cache subsystem.CacheMissPenalty,MIPS,
andSystemClockFrequency are system parameters introduced
in Section 3.

5. SYNTHESIS OPTIMIZATION ALGORITHMS

The problems encountered in synthesis of a multiprocessor
DSP single chip system and competitive optimization algorithms
are described in detail in the following subsections. First, the prob-
lem of on-line servicing of soft real-time tasks is recognized, its
complexity is established, and an efficient heuristic is proposed.
Second, the resource allocation algorithm which performs a branch-
and-bound search for an area-minimal configuration that satisfies
the system service throughput requirements is elucidated.

5.1. On-Line Soft Real-Time Task Scheduling
In order to improve the service rate of a multiprocessor sys-

tem for a given, expected, input datastream, we developed a novel
on-line soft real-time task scheduling algorithm. The algorithm
targets on-line scheduling of the task model described in Section
3. The optimization problem can be formulated using the standard
Garey-Johnson format [Gar79]:
Problem: On-Line Soft Real-Time Task Scheduling.
Instance: Given a set ofk heterogeneous processing elements
PEi; i = 1::k, a set ofn tasksTj ; j = 1::n, where each taskTj
containsnj subtasksSjp; p = 1::nj which have execution times
r(Sjp; PEi) when executed onPEi. Input stream of tasksI(Tm,
a(Tm), d(Tm)) defined with arrivala(Tm) and deadlined(Tm)
times for each taskTm.
Question: Is there a dynamic schedule such that all subtasks of all
tasks in the input stream are serviced byPEi; i = 1::k?

The On-Line Soft Real-Time Task Scheduling problem is NP-
complete, since there is one-to-one mapping between the its spe-
cial case and the Multiprocessor Scheduling problem ([Gar79]),
where each task contains one subtask, arrival times of all tasks
are known at all times, and the set of PEs is homogeneous. We

have developed a heuristic solution for dynamic subtask schedul-
ing on a heterogeneous set of PEs, which employs weighted sum
of several heuristics to produce a performance superior, champion
heuristic. The existing heuristic approaches to this problem select
for execution the pending subtask of all pending tasks which has
the smallest [Kao93]:

� Ultimate Deadline. The deadline of each subtask is equal
to the deadline of the parent task.

� Effective Deadline (ED). The deadline of a subtask is equal
to the difference of the parent task’s deadline and expected
remaining execution time of the task.

� Equal Slack (ES). The remaining slack is divided equally
among the remaining subtasks.

� Equal Flexibility (EF). The remaining slack is divided among
the remaining subtasks proportionally to their execution times.

For (;;)
If PEi is idle
For eachsubtaskST to execute of each pending taskT
ComputeOF (T; ST ) = �ED(ST ) + �ES(ST )+

EF (ST ) + �TE(T ) + �SE(T )
where the execution timer(ST ) used in the heuristics
corresponds toPEi

Schedule the task with the smallestOF (T; ST )

Figure 3: Pseudo code for on-line soft real-time task scheduling.

The implementation and effectiveness of these approaches are
described in [Kao93]. We employ two new decision-making heuris-
tic functions:

� Time to Execute (TE). The remaining task execution time.
� Subtasks to Execute (SE). The remaining task’s subtasks.
In Section 6, we prove that the influence of these heuristics sig-

nificantly improves the system servicing throughput. The dynamic
scheduling heuristic is described using the pseudo-code in Figure
3. Note that all parameters of the algorithm objective function are
statistically determined and validated at run-time using the metaal-
gorithmic parameter evaluation strategy introduced in [Kir97].

5.2. Resource Allocation
The outer shell of the synthesis approach is a branch-and-

bound search loop which generates a number of multiprocessor
configurations and selects an area-minimal configuration. The con-
figurations should be capable of satisfying the soft real-time ser-
vice throughput requirement with respect to the benchmark input
data stream. The resource allocation algorithm is described in de-
tail using the pseudo-code in Figure 4.

The outer loop of the branch-and-bound search iteratively in-
creases the number of processing elements, PES. For each PES
value, a set of all microprocessor configurations which can po-
tentially satisfy the soft real-time service (SRTS) requirements is
generated. A microprocessor configuration can potentially satisfy
the SRTS requirements when each microprocessor is assigned an
infinite cache structure, is assumed not to be idle at any time, is
assumed to execute only subtasks of, later on, completed tasks,
and does not take more area than the current best solution with
the smallest available I- and D-caches. For each microprocessor
configuration, an exhaustive search is performed for the smallest
multiprocessor-cache structure which satisfies the SRTS require-
ments. While searching through the space of all cache structure
variations, individual I-caches are increased exponentially. Since
the function that describes a cache miss ratio monotonically de-
creases with the increase of the cache size, a binary search on
the exponential scale of the corresponding D-cache size is em-
ployed. The search is bounded at any time with lower and upper



pessimistic bounds which determine dominated solutions. Domi-
nated solutions are found according to the following rules:

� For a set of programmable coresA, the best cache subsys-
tem so far recorded forA of Q bytes, and fixed I-cache of
P bytes, we do not evaluate D-caches larger thanQ � P
bytes.

� When the best core-cache configuration totalsR mm2 and
a set of cores of areaX, we terminate the search whenever
the sum of the I-caches and D-caches exceedsR�X mm2.

PES = 2
While
For eachpotentially satisfiable processor configuration
For eachpotentially satisfiable cache configuration
where for eachI cache :: size = 128B::maxB; sets = 1::2
do Binary Search forD cache of minimal size such that the
configuration(core; I cache;D cache) satisfies SRTS requirements.

PES = PES + 1
until the area dedicated only to the potentially satisfiable processor
configuration is smaller than the area of the current best solution.
Return the overall configuration of minimal total area.
At any point during the algorithm, search is terminated along paths which
are dominated by any other already pessimistically evaluated solution.

Figure 4: Pseudo code for the resource allocation procedure.

6. EXPERIMENTAL RESULTS

We present experimental results for both the on-line soft real-
time scheduling heuristic and our resource allocation algorithm.
To emulate realistic traffic soft real-time system environment we
used traffic traces from public networks [Duk] and multimedia
applications from the MediaBench benchmark suite [Lee97] par-
titioned into logic subtasks. In Table 5 a comparison of a ran-
dom (R), round robin (RR), ED, EF, and our on-line soft real-time
scheduling heuristic is shown. Columns 2-7 show the percent of
serviced tasks with respect to a particular task arrival rate. Note
that the meta-algorithmic approach resulted in consistently better
scheduling with respect to all other approaches. In column eight,
the averaged improvements are presented when meta-algorithmics
scheduling was used with respect to the other scheduling approaches.

Algo- Task arrival rate Impr.
rithm 1 1.5 2 2.5 3 3.5

R 0.95 0.66 0.31 0.16 0.12 0.10
RR 0.92 0.60 0.33 0.22 0.16 0.13
ED 0.89 0.68 0.48 0.37 0.29 0.24
EF 0.90 0.71 0.55 0.46 0.40 0.35

Meta 1.00 0.83 0.64 0.53 0.45 0.40

Algo- Task arrival rate
rithm 4 5 6 7 8 10

R 0.07 0.03 0.01 0.00 0.00 0.00 76%
RR 0.10 0.07 0.10 0.06 0.04 0.04 68%
ED 0.21 0.16 0.13 0.11 0.09 0.07 49%
EF 0.32 0.27 0.23 0.21 0.19 0.16 29%

Meta 0.36 0.31 0.27 0.24 0.21 0.18 -

Figure 5: Comparison of five soft real-time scheduling heuristics.

Note that for a given on-line soft real-time scheduling, the re-
source allocation algorithm results in optimal solution. Therefore,
we present a sample configuration which satisfies the soft real-time
requirements for traffic traces at [Duk] and all applications from
the MediaBench suite where each task was given deadline twice
as long as the execution time of that task on the slowest core. Ta-
ble 3 shows the processor core configuration with cache strucutres
for each processor and the allocated total area.

7. CONCLUSION
The increasing popularity of Internet and communications appli-
cations has resulted in high demand for DSP soft real-time server
systems. We developed a methodology for synthesis of multipro-
cessor soft real-time DSP systems. The approach relies on an ef-
ficient meta-algorithmic based heuristic for on-line scheduling of
tasks with soft timing constraints. The developed resource allo-
cation algorithm employs lower and upper pessimistic bounds to
reduce the solution search space. The efficacy of the approach was
tested on a set of real-life traffic traces and industry strength mul-
timedia benchmark applications.

Processor Core I-Cache D-Cache
3� fLSI Logic CW4001g each with 1KB each with 1KB
+ 2� fLSI Logic TR4101g both with 512KB both with 1KB

+ Motorola M-core 512B 1KB
+ StrongARM 1KB 2KB

Total system area 52.0mm2

Table 3: Area-minimal system configuration for a given input data
stream and set of applications application.
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