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ABSTRACT

Symbolic signals are, in discrete-time, sequences of quanti-
ties that do not assume numeric values. In the most general
case, these quantities have no mathematical structure other
than that they are members of some set, but they can have
a sequential structure. We show that processing such sig-
nals does not entail mapping them directly to the integers,
which would impose more structureordering and arith-
metic than present in the data. We describe how linear
estimation and prediction can be performed on symbolic se-
quences. We show how spectrograms can be computed from
neural population responses and from DNA sequences.

1. INTRODUCTION

Information has two basic forms: numeric and symbolic.
Much of signal processing is concerned with the analysis
of numeric information, such as geophysical, physical, and
engineering data. Classic digital signal processing meth-
ods apply to sequences whose values have a rich mathe-
matical structure. For example, speech signals and images
can be added and scaled, which means that mathematically
an algebra can be defined for such signals.Symbolic sig-
nalshave been more difficult to analyze because the alpha-
bet from which they are drawn does not have a rich math-
ematical structure. Symbolic sequences, which we define
mathematically to be a sequence of members of a set drawn
according to a probabilistic rule, occur in many scientific
and engineering applications: Text files, when viewed as a
sequence of letters, descriptive data such as daily weather
(sunny, cloudy, rainy, etc.), DNA sequences (formed from
four bases represented by the lettersfA,C,G,Tg), and digi-
tal communication symbols (ones and zeros for high dimen-
sional signal sets) are but a few examples. Our applications
will be drawn from neuroscience, where we are concerned
with analyzing the responses of collections of neurons, and
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Figure 1: Individual neurons are given an arbitrary identifi-
cation number. The discharge pattern for each is measured,
and individual discharges placed in thenth bin (each bin has
width �). Using the neuron identification number and the
presence of discharges in a binary code, a number denoted
by xn is assigned to each bin to represent which neurons
fired during that bin.

from molecular biology, where we analyze patterns in DNA
sequences.

2. DEFINITIONS

Let xn be a symbolic-valued sequence, each sample tak-
ing on values in the countable setA = fa1; : : : ; aLg. In
this work, we consider only stochastic symbolic signals,
which are generated according to a probability law. In gen-
eral, this law takes the form of the conditional probability
Pr[xn = al j xn�1 = ai; xn�2 = aj; : : : ]. Markov models
are most prevalently used to describe symbolic sequences,
with dependencies higher than first order often required. In
our applications, the dependence structure of the underly-
ing probability law is time-varying and unknown. It is this
dependence structure that we want to elucidate with sym-
bolic signal processing techniques. In particular, consider
the three-neuron population shown in figure 1. The neu-
ral population’s response during thenth bin is summarized
either by a single numberxn that summarizes in a binary



code which neurons, if any, discharged during the bin, or
by a vector displaying which neuron discharged. For ex-
ample,xn = 3 and xn = col[1; 1; 0] both indicate that
neurons 0 and 1 discharged during thenth bin and that neu-
ron 2 did not. Here, the former symbolizes this discharge
pattern, and is not to be taken as an integer (implying or-
dering and an arithmetic), and the latter is very descriptive
of the underlying physical situation. For DNA sequences,
the symbolic signal describes which base occurred along
the length of the molecule. The sequence’s values are the
four DNA bases, which are represented by letters of the al-
phabet:A = fA;C;G;Tg.

3. ALGORITHMS

In statistical signal processing, techniques can be broadly
categorized as being detection or estimation algorithms. In-
terestingly, detection algorithms donot require the pro-
cessed sequences to be numeric and deal with symbolic data
on an equal footing. The reason for this fit is the fact that the
optimal detection algorithm arises from the likelihood ratio,
which is a ratio of probability distributions. Because prob-
ability distributions are easily defined for symbolic data,
detection algorithms quickly emerge. Even in problems
wherein thea priori probability distributions are not known
(so-called empirical classification problems [2]), symbolic
sequences can be handled as well. Distribution-free detec-
tors have been developed for communications problems that
have in their fundamental structure symbolic signal process-
ing algorithms [3].

The key notion in enabling standard signal processing
estimation algorithms (ones developed for numeric-valued
signals) is to convert from symbols to real values in such
a way that ordering and arithmetic cannot be meaningfully
defined [4]. We begin by representing each symbol by an
indicator vectorel, wherein only thelth element is numer-
ically 1 and the remainder are zero. For the neural popu-
lation example,xn = 3 , e3 = col[0; 0; 0; 1; 0;0;0; 0].
Despite the numeric appearance of this representation, no
ordering for the values can be defined, and neither scaling
nor addition makes sense (indicator vectors can only have
one nonzero entry and that must be unity). The symbolic se-
quence is equivalent to the sequence of corresponding indi-
cator vectors, which we callyn. We then create a numeric-
valued time serieszn corresponding toyn by forming the
inner product between it and a fixed, but arbitrary, weight
vectorw: zn = w0yn. Here, 0 denotes conjugate trans-
pose. The weight vector is determined from signal pro-
cessing considerations, which we detail subsequently. This
translation from symbolic to numeric form retainsall the
information in the original symbolic sequence as well as its
lack of mathematical structure (no ordering exists and no
algebra can be readily defined).

In searching for direct estimation techniques, statisti-
cians have for years dealt with symbolic sequences un-
der the label of categorical time series or longitudinal
categorical data [1]. We focus here on spectral estima-
tion techniques. The discrete Fourier transform (DFT),
among many other transforms, is a linear transformation
applied tozn. Letting fk denote the vector of DFT trans-
form coefficients corresponding to the discrete-time fre-
quency indexk, the length-N discrete Fourier transform is
f 0kcol[z0; z1; : : : ; zN�1]. Note that
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Here, the matrix formed from theys has dimensionN �
L. Consequently, the Fourier transform calculation equals
f 0k(col[y
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]w). Regrouping, the product of
the first two terms corresponds to evaluating separately
the DFT of each component of the sequenceyn, n =
0; : : : ; N � 1, with the result forming a row vector that
we represent asY0

k. Thus, the magnitude-squared of the
DFT at frequency indexk equalsw0YkY

0

kw. The term
YkY

0

k amounts to the cross-spectral matrix ofeach possi-
ble symbol’s occurrence in the sequence. We can determine
the weight vector according to the criterion that it max-
imizes the power in the Fourier transform (subject to the
usual norm constraint on the weight vector). In this way, we
determine the weight vector to maximize signal processing
efficacy, passing from a symbolic to a numeric sequence
after making the signal processing calculation. Formally,
we want to maximizew0YkY

0

kw subject to the norm con-
straintkwk = 1. This problem’s solution corresponds to the
eigenvector of the cross spectral matrixYkY

0

k having the
largest eigenvalue, and the corresponding power equals this
eigenvalue. This procedure is repeated for each frequency
indexk, meaning that we must compute the largest eigen-
values of cross-spectral matrices for each frequency of con-
cern. Since the weight vector depends on frequency, no one
weight vector relates the symbolic sequence to a numeric
one, thus fulfilling the goal of not imposing mathematical
structure on the data.

The cross-spectral matrix must be estimated from the
data. We have suggested that it is an outer product, consist-
ing of the data’s Fourier transform computed over its entire
length. The cross-spectral matrix formed this way has only
one non-zero eigenvalue, and italwaysequals one. Conse-
quently, the matrix is ill-suited for spectral estimation. Bor-
rowing results from time-frequency analysis, a better ap-
proach is to compute shorter transforms (applying a window
and overlapping the sections), and average these transforms
across the data [4]. With this approach, we produce a sin-
gle Fourier transform for the entire symbolic sequence; the
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Figure 2: In this three-neuron example, the probability of responses per bin are shown in the lower panel. The responses were
correlated from bin-to-bin in each neuron with a first-order Markov model (� = �:1), an approximation to actual recording
statistics. Responses ineach neuron where statistically independent of the others for the first half of the response. During
bins 55-75, the responses were jointly correlated (�3 = 0:3), but not pairwise correlated. In the last 20 bins, neurons #0 and
#1 became strongly correlated (�0:1 = :8). The upper panel shows the spectrogram, where the binwidths were assumed to be
1 ms. The transform size was 64 and frames had a 10 sample duration (overlap was half a frame). The ensemble contained
500 members.

sequence must be stationary for this procedure to be valid.
Because we are concerned withnonstationary signals, this
approach does not suffice. We have two alternatives. As in
short-time Fourier analysis, we average cross-spectral ma-
trices over short time segments, and produce spectrograms
in the usual way. In neuroscience, we have the luxury of re-
peating the experiment, providing an ensemble of datasets
having a common time origin with respect to the stimulus.
We can therefore average across the ensemble to produce
cross-spectral matrices without assuming stationarity. Ei-
ther way, we can compute what amounts to a spectrogram
for the symbolic sequence.

4. APPLICATIONS

Figure 2 displays a spectrogram for a three-neuron simula-
tion. An important aspect of neuroscience applications is
the rapid response variations. The classic time-frequency
resolution tradeoff enters, and we currently require short
frames (10 samples in this example) for barely adequate
temporal resolution. Furthermore, because the spectral es-
timation algorithm involves only the cross-spectral matrix,
only pairwise interactions are considered. Theoretically,
higher order correlations are possible; the simulation shows
that these cannot be detected (compare bins 0-20 when no

correlation is present with 55-75 when third-order correla-
tion exists). Spectral analysis reveals such inter-neuronal
correlations, but does not as yet detail what kind of correla-
tions are present.

Figure 3 shows spectrograms computed for portions of
the DNA sequence of the bacteriumE. coli. Spectral analy-
sis reveals a weak, but persistently present spectral line hav-
ing a frequency of 1/3 (upper left panel of figure 3). Such
spectral lines indicate coding segments. The second spec-
trogram also contains a weak spectral line at the same fre-
quency, but also a “spectral burst” near base 35,000. Ex-
amination of the sequence (bottom right) reveals a complex
periodic structure that may indicate a specific coding region.

5. CONCLUSIONS

Symbolic signals constitute an interesting and new applica-
tion area for developing signal processing algorithms. The
procedure described here enable the application of more tra-
ditional, numerically oriented, signal processing methods to
the analysis of symbolic information. With this approach,
the spectral techniques described here and others can reveal
how symbolic data represent information. The linearity of
the mapping between symbolic and numeric signals allows
use of other linear transforms, wavelet expansions, for ex-
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Figure 3: The upper panels show spectrograms for two length-10000 segments of theE. coli DNA sequence obtained from
the National Library of Medicine (www2.ncbi.nlm.nih.gov/genbank). Section length was 128 bases and we employed a
Hanning window in calculating the spectra (256-point DFT). Sections overlapped by 64 bases (half-section). The bottom
plots show “interesting portions” of the original data as expressed by the spectrograms.

ample. In this linear approach, a key question is how to de-
termine the weight vector that best reveals patterns. This
choice is governed by the type of signal processing em-
ployed and by the optimization criterion.
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