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ABSTRACT

The theory of the 2-D Wold decomposition of homogeneous
random �elds is e�ective in image and video analysis, syn-
thesis, and modeling. However, a robust and computation-
ally e�cient decomposition algorithm is needed for use of
the theory in practical applications. This paper presents
a spectral 2-D Wold decomposition algorithm for homoge-
neous and near homogeneous random �elds. The algorithm
relies on the intrinsic fundamental-harmonic relationship
among Fourier spectral peaks to identify harmonic frequen-
cies, and uses a Hough transformation to detect spectral
evanescent components. A local variance based procedure
is developed to determine the spectral peak support. Com-
pared to the two other existing methods for Wold decom-
positions, global thresholding and maximum-likelihood pa-
rameter estimation, this algorithm is more robust and ex-
ible for the large variety of natural images, as well as com-
putationally more e�cient than the maximum-likelihood
method.

1. INTRODUCTION

Characterizing the relatively homogeneous texture regions
in image and video data has always been an important re-
search area, with applications ranging from segmentation
and coding to pattern matching and recognition. In new
applications such as content-based access of digital libraries,
texture is one of the most commonly used low-level features.

A textured image region can often be regarded as a ho-
mogeneous (stationary) random �eld. The two-dimensional
(2-D) Wold-like decomposition theory for homogeneous ran-
dom �elds has previously been introduced to texture anal-
ysis and synthesis in still images [1] and to periodic motion
detection and segmentation in video [2]. The 2-D Wold the-
ory allows an image pattern to be decomposed into three
mutually orthogonal components. The perceptual charac-
teristics of these components can be described as \period-
icity", \directionality", and \randomness", agreeing closely
with the dimensions of human texture perception identi�ed
in [3]. It was shown in [4], compared to other state-of-
the-art texture models, Wold-based modeling o�ers percep-
tually more satisfying results in image database retrieval.
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Furthermore, demonstrated recently via a human study [5],
the Wold component energy provides a good computational
measure for the top dimension of human texture perception,
the dimension of repetitiveness vs. randomness.

A main challenge in Wold-based image modeling is to
develop an e�cient and robust 2-D Wold decomposition al-
gorithm. To date, the algorithms reported are either com-
putationally prohibitive for practical applications or not ro-
bust enough to handle the large variety of natural images.
This paper presents a new decomposition algorithm that is
computationally e�cient and robust for natural image data.

2. 2-D WOLD DECOMPOSITION

Consider a homogeneous and regular random �eld fy(m;n)g,
(m;n) 2 Z2. The 2-D Wold decomposition allows the �eld
to be decomposed into two mutually orthogonal compo-
nents [6]:

y(m;n) = v(m;n) +w(m;n): (1)

where fv(m;n)g is deterministic and fw(m;n)g is indeter-
ministic. The deterministic component can be further de-
composed into the mutually orthogonal harmonic compo-
nent fh(m;n)g and evanescent component fg(m; n)g:

v(m;n) = h(m;n) + g(m;n): (2)

In the frequency domain, the spectral distribution func-
tion (SDF) of fy(m; n)g can be uniquely represented by
the SDF's of its component �elds:

Fy(�; �) = Fv(�; �) + Fw(�; �); (3)

where Fv(�; �) = Fh(�; �) +Fg(�; �), and functions Fh(�; �)
and Fg(�; �) correspond to spectral singularities supported
by point-like and line-like regions, respectively. Examples of
natural textures containing di�erent prominent Wold com-
ponents are shown in Figure 1.

3. PREVIOUS WORK

Two decomposition methods have been proposed in the lit-
erature [7] [1]. The �rst is a maximum-likelihood direct
parameter estimation procedure, which provides paramet-
ric descriptions of image Wold components. Its developers
reported that the algorithm can be computationally expen-
sive, especially when the number of spectral peaks is large
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Figure 1: Examples of natural textures with di�erent
prominent Wold components. Top row: originals. Bottom
row: Fourier magnitudes. (a) Sweater, with a strong har-
monic component (spectral peaks supported by point-like
regions). (b) Brodatz texture D78, with a strong evanescent
component (spectral peaks supported by line-like regions).
(c) Brodatz texture D32, with mostly an indeterministic
component (relatively smooth spectrum).

or the energy in the spectral peaks is not very high com-
pared to that in the neighboring Fourier frequencies [7]. Un-
fortunately, these situations often arise in natural images.
The second method is a spectral decomposition procedure
[1]. It applies a global threshold to the image periodogram,
and the Fourier frequencies with magnitude values larger
than the threshold are considered to be the harmonic or
the evanescent components. Although this method is com-
putationally e�cient, it is not robust enough for the large
variety of natural texture patterns. As shown in Figure 2,
the support region of a harmonic peak in a natural texture
periodogram is usually not a point, but a small spread sur-
rounding the central frequency. Therefore, two issues are
essential for a decomposition scheme: locating the spectral
peak central frequencies, and determining the peak support
regions. In the example in Figure 2, the Brodatz texture [8]
D11 has some high frequency spectral peaks that are only
locally large in magnitude. Global thresholding yields ei-
ther poor segmentation of the peak supports as in Figure 2
(c) or inaccurate peak identi�cation as in Figure 2 (d). In
natural textures, this type of spectra abounds. Hence, a
new algorithm is needed.

4. NEW DECOMPOSITION ALGORITHM

The new algorithm takes a spectral decomposition approach.
It decomposes an image by extracting its Fourier spectral
peaks supported by point-like and line-like regions. As dis-
cussed before, a spectral approach needs to locate the peak
central frequencies as well as to estimate the peak supports.
Hence the new algorithm consists of four parts: harmonic
peak detection, evanescent line detection, peak support es-
timation, and decomposition.

(a) (b)
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Figure 2: Spectral peak detection of Brodatz texture D11
using global thresholding. (a) Original. (b) Fourier mag-
nitudes. (c) A high threshold gives poor estimates of peak
support. (d) A low threshold gives better peak support but
picks up indeterministic frequencies. See Figure 8 (a) for
results from the new algorithm.

4.1. Harmonic Peak Detection

The harmonic peaks are detected in the Fourier magnitude
image. The quadrants of the image are rearranged such
that the zero frequency is at the center. To reduce the
edge e�ect, a Gaussian taper can be used when computing
the image Fourier transforms. Since for real images the
magnitude values are symmetric to the zero frequency, only
half of the frequency plane needs to be considered.

As shown previously, spectral peaks can be locally but
not globally large. Hence, local maxima are �rst found in
the magnitude image using a 5 � 5 neighborhood. Values
below 5% of the entire magnitude range are ignored. To
identify the true harmonic peaks from the local maxima,
the intrinsic fundamental-harmonic relationship among the
harmonic peaks is used. This relationship is illustrated in
Figure 3. A local maximum quali�es as a harmonic peak
only when its frequency is either a fundamental or a har-
monic. A fundamental is a frequency that can be used to
linearly express the frequencies of some other local max-
ima. A harmonic is a frequency that can be represented as
a linear combination of some fundamentals.

Due to the sampling e�ect of discrete Fourier trans-
forms, the frequency samples may not align to the true
peaks of the continuous spectrum. Small sampling errors in
the fundamentals can cause misidenti�cation of their high
frequency harmonics. To reduce the sampling e�ect, each
fundamental frequency value is re�ned to subsample pre-
cision using the harmonics found at the multiples of the
fundamental, and a tolerance of two sample points in both
row and column directions is used for frequency matching.

Examples of harmonic peak detection are shown in Fig-
ure 4.
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Figure 3: Fundamental-harmonic relationship among har-
monic peaks. (a) 2-D sine grating and its Fourier magni-
tudes, having two frequencies. (b) Checkerboard pattern
and its Fourier magnitudes, having two fundamentals (with
the same frequencies as in (a)) and a series of harmonics.
Edges in natural patterns usually fall in between these ex-
treme cases, hence the fundamental-harmonic relationship
usually exists.

Figure 4: Spectral harmonic peak detection on Brodatz tex-
ture D34 (top row) and D82 (bottom row). Left: original.
Center: Fourier magnitudes. Right: detected harmonic
peaks.

4.2. Evanescent Line Detection

The Hough transformation method for line detection [9] is
used to detect the evanescent lines in the Fourier magnitude
images. Prior to applying the Hough transform, any large
spectral values associated with the harmonic peaks should
be removed. An example of evanescent line detection is
shown in Figure 5, where six lines are found for the Brodatz
texture D64.

4.3. Peak Support Estimation

An iterative procedure is used to estimate the spectral peak
support regions in a Fourier magnitude image. The process
is initialized by the detected harmonic peaks and evanescent
lines. Along the lines, frequencies with magnitude values
less than 5% of the magnitude range are omitted. At the
beginning of each iteration, a 2-D Gaussian surface is �t-
ted to the magnitude image to coarsely model the relatively
smooth \background". Based on the local variance of the
�tting residual, new support frequencies are identi�ed and
removed, and the magnitude image becomes \smoother".
This smoothness is measured by the ratio between the av-
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Figure 5: Example of spectral evanescent line detection.
(a) Brodatz texture D64. (b) Fourier magnitudes of (a).
(c) Lines found in (b). (d) Hough transform of (b). Lines
in (c) correspond to the six large local maxima in (d).

Figure 6: Left: spectral harmonic peaks detected in Bro-
datz texture D11. Right: estimated peak support (white)
and the corresponding adjacent (light gray) and ambient
(dark gray) areas after 4 iterations. The original and its
Fourier magnitude image are in Figure 2.

eraged local standard deviations (5� 5 estimation window)
in the areas adjacent to the estimated peak support regions
and that in the ambient areas. Figure 6 illustrates the tech-
nique and Figure 7 shows how the local standard deviation

ratio reduces after each iteration. The iterative process ter-
minates when the change of the local standard deviation
ratio between two iterations is less than 0:1. Further de-
tails of this iterative procedure can be found in [5].

4.4. Decomposition

The �nal decomposition of a homogeneous random �eld is
based on the decomposition of its spectral Wold compo-
nents. Denote the image's 2-D discrete Fourier transform
(DFT) as Y (k; l), the corresponding frequency plane as D,
and the set of spectral peak and peak support frequencies
identi�ed in the previous stages as Dv. The DFT of the
random �eld can be then decomposed into the determinis-
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Figure 7: Fourier magnitude local standard deviation ratios
of 13 Brodatz textures in the �rst 7 iterations.

tic component

V (k; l) =

�
Y (k; l); (k; l) 2 Dv

0; (k; l) 2 D; (k; l) 62 Dv
(4)

and the indeterministic component

W (k; l) =

�
Y (k; l); (k; l) 2 D; (k; l) 62 Dv

0; (k; l) 2 Dv
(5)

The deterministic �eld v(m;n) and the indeterministic �eld
w(m;n) are obtained by computing the inverse DFT of
V (k; l) and W (k; l), respectively. Note that, when neces-
sary, the deterministic component can be further decom-
posed into the harmonic and the evanescent components in
a similar manner.

4.5. Examples

Three decomposition examples are shown in Figure 8. The
originals, shown in Figure 1 and Figure 2, have size 256�
256. The computing time ranges from 15 to 20 seconds on
a HP9000/735 Workstation.

5. CONCLUSIONS

A spectral 2-D Wold decomposition algorithm for homo-
geneous and near homogeneous random �elds is presented.
This algorithm relies on the intrinsic fundamental-harmonic
relationship among image Fourier spectral peaks to iden-
tify harmonic frequencies, and uses a Hough transforma-
tion to detect spectral evanescent components. A local vari-
ance based procedure is developed to determine the spectral
peak support. Compared to the two other existing Wold
decomposition algorithms, the global thresholding and the
maximum-likelihood parameter estimation, this algorithm
is more robust and exible for the large variety of natural
images, as well as computationally more e�cient than the
maximum-likelihood method.
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