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ABSTRACT

In this paper we present and compare two different spatio-temporal
decorrelation learning algorithms for updating the weights of a lin-
ear feedforward network with FIR synapses (MIMO FIR filter).
Both standard gradient and the natural gradient are employed to
derive the spatio-temporal decorrelation algorithms. These two al-
gorithms are applied to multichannel blind deconvolution task and
their performance is compared. The rigorous derivation of algo-
rithms and computer simulation results are presented.

1. INTRODUCTION

Multichannel blind deconvolution (MBD) is a fundamental prob-
lem encountered in a variety of applications such as wireless com-
munications, image processing, array processing, and some biomed-
ical applications. Let us define anm dimensional vector of obser-
vations,x(k) and ann dimensional vector of sources,s(k) as

x(k) = [x1(k) � � � xm(k)]T ;

s(k) = [s1(k) � � � sn(k)]T : (1)

With this definition, the observation vectorx(k) is assumed to be
generated from an unknown source vectors(k) through the un-
known MIMO FIR filterH(z) i.e.,

x(k) = H(z)s(k) + v(k); (2)

wherev(k) is anm dimensional additive white Gaussian noise
vector that is assumed to be statistically independent of the source
vectors(k). The FIR polynomial matrixH(z) is described as

H(z) =

MX
p=0

Hpz
�p
; (3)

wherez�p is the delay operator such thatz�ps(k) = s(k�p) and
M is the order of the given MIMO FIR channel. We assume that
source signalsfsi(k)g are spatially independent and temporally
i.i.d.

The task of multichannel blind deconvolution is to recover
the source vectors(k) from the observation vectorx(k), up to
possibly scaled, reordered, and delayed estimates, i.e.,ŝ(k) =
P�D(z)s(k), whereP 2 IRn�n is a permutation matrix,� 2
IRn�n is a nonsingular diagonal scaling matrix, andD(z) is a di-
agonal matrix given by

D(z) = diagfz�d1 ; � � � ; z�dng: (4)

In other words, the objective of multichannel blind deconvolution
is to design a multichannel equalizer so that the global system

G(z) (which combines the effect of channel and equalizer) has
a decomposition of the following form:

G(z) = P�D(z): (5)

For an finite order MIMO FIR channel, not every channel ma-
trix H(z) has a decomposition (5). A channel matrixH(z) is
said to be signal-separable [16] if there exist an equalizer (the
inverse of the channel) so thatG(z) has a decomposition (5).
Sufficient conditions for signal-separability have been investigated
by Massey and Sain [17] and Tugnait [20]. It usually requires
strictly more sensors than sources, i.e.,m > n. Throughout this
paper, we will consider the case where the channelH(z) satis-
fies the signal-separability conditions (see [20] for detailed signal-
separability conditions). In addition, we neglect the effect of ad-
ditive noise vectorv(k), although the computer simulation was
conducted with considering the noise vector.

2. WHY SPATIO-TEMPORAL DECORRELATION FOR
MBD

It was shown [12, 13] that if the channelH(z) is signal-separable,
then in the absence of additive noisev(k), spatio-temporal decor-
relation can deconvolve the MIMO channel up to the instantaneous
mixtures of source signals which can be further separated by inde-
pendent component analysis [15, 11, 10, 5, 3, 6]. Let us define by
W(z) an multivariate FIR filter for spatio-temporal decorrelation
and byU a demixing matrix. ThenUW(z)H(z) has a decom-
position (5). Linear prediction method was employed in [12, 13]
where some prior knowledge is required to find an innovation vec-
tor. Later, the spatio-temporal anti-Hebbian rule [7, 9] for a lin-
ear feedback network was developed for spatio-temporal decorre-
lation.

We would like to mention the advantages of this approach over
other existing MBD methods.

� Spatio-temporal decorrelation is able to deconvolve the chan-
nel up to instantaneous mixtures of sources, so the number
of sources can be easily detected via principal component
analysis (PCA), whereas the number of sources is assumed
to be known in [14, 18, 4, 19].

� This approach with the proposed algorithms is computa-
tionally efficient over the successive estimation [20], the
sequential extraction [8].

� Spatio-temporal decorrelation is based on linear learning,
so the convolutive mixtures of arbitrary-distributed sources
can be separated. We found out this approach is efficient for
the mixtures of super-Gaussian (sparse) sources, whereas
most existing algorithms are focused on sub-Gaussian sources.



In this paper, we consider an linear feedforward network with
FIR synapses (see Figure 1) and derive two efficient spatio-temporal
decorrelation algorithms using both standard gradient and the nat-
ural gradient [1].

3. SPATIO-TEMPORAL DECORRELATION
ALGORITHMS

We derive two algorithms which are able to minimize statistical
dependence, although we are interested in decorrelation. We treat
spatio-temporal decorrelation algorithms as a special case of the
derived algorithms. As will be shown here, spatio-temporal decor-
relation algorithms can be obtained using Gaussian density model.

3.1. Standard Gradient

We consider a linear feedforward network with finite order FIR
synapses (multivariate FIR filter, see Figure 1) whosem dimen-
sional output vector,y(k) is described as

y(k) =
LX
p=0

Wp(k)x(k� p); (6)

wherefWp(k)g are synaptic weight matrices. We defineW(z; k)
as

W(z; k) =
LX
p=0

Wp(k)z
�p
: (7)
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Figure 1: A linear feedforward network with FIR synapses.

We considerm observationsfxi(k)g andm output signals
fyi(k)g over aN -point time block. Let us define the following
vectors:

X = [xT (0) � � �xT (N � 1)]T ;

Y = [yT (0) � � �yT (N � 1)]T :

The coefficient matricesfWp(k)g should be updated in such
a way that the filter output signals are as spatio-temporally inde-
pendent as possible, i.e., the joint probability density ofY is fac-
tored into the product of marginal densities:

p(Y) =
mY
i=1

N�1Y
k=0

qi(yi(k))

=
mY
i=1

fqi(yi)gN : (8)

In the second equality is the result of the assumption on identical
distribution.

As an optimization function, we choose the Kullback-Leibler
divergence which is an asymmetric measure of distance between
two different probability distributions. Then, the riskR(W(z; k))
(the optimization function) is given by

R(W(z; k)) = EfL(W(z; k))g
=

1

N

Z
p(Y) log p(Y)Qm

i=1fqi(yi)gN
dY: (9)

To derive the relation betweenp(X ) andp(Y), we write (6) in
a matrix form,

Y =WX ; (10)

whereW is given by

W =

2
6664

W0 0 � � � 0

W1 W0 � � � 0
...

...
WN�1 WN�2 � � � W0

3
7775 (11)

The length of delay,L in the FIR filter is much smaller thanN ,
i.e.,WL+1 = � � � =WN�1 = 0. The input-output equation (10)
written in a matrix form, leads to the following relation between
p(X ) andp(Y):

p(Y) = p(X )

j detWN
0 j

; (12)

where det denotes the determinant of a matrix. Invoking the rela-
tion (12), our loss functionL(W(z; k)) is given by

L(W(z; k)) = � log j detW0j �
mX
i=1

log qi(yi): (13)

Note thatp(X )was not included in (13) because it does not depend
on the parameter matrixfWp(k)g.

Using the stochastic gradient descent, we can derive the fol-
lowing algorithm:

�Wp(k) = ��k dL(W(z; k))

dWp

= �kfW�T
p (k)�p � '(y(k))xT (k � p)g;(14)

where�k > 0 is a learning rate and�p is the Kronecker delta equal
to 1 if p = 0, otherwise it is zero. The'(y(k)) is a elementwise
function defined as

'(y(k)) = ['1(y1(k)); : : : ; 'm(ym(k))]T ; (15)

where

'i(yi) = �@ log qi(yi)

@yi
: (16)

In order to avoid the computation of the inverse of the matrix
W0(k), we postmultiply (14) byWT

0 (k)W0(k). In addition,
we add a constraint so that the magnitude offyi(k)g is not con-
trolled by the algorithm. Specially this constraint is efficient for
overdetermined case. The resulting learning algorithm for updat-
ingW0(k) has the form:

�W0(k) = �kf�(k)� y(k)xT (k)WT
0 (k)gW0(k); (17)



where�(k) is a diagonal matrix whoseith diagonal element is
equal to theith diagonal element of the matrixy(k)xT (k)WT

0 (k).
And for p 6= 0, the learning algorithm is

�Wp(k) = ��ky(k)xT (k � p): (18)

As a special case of the algorithm (17), (18), linear learning ('(yi) =
yi) can obtained using the Gaussian density model, i.e.,

qi(yi) =
1p
2�

e
� 1

2
y2i : (19)

3.2. Natural Gradient

The derivation of the spatio-temporal decorrelation algorithm us-
ing the natural gradient was motivated by Amariet al’s previous
work [4] in which the only complete case (m = n) was consid-
ered. In this derivation, we use the technique described in [4] and
also incorporate a nonholonomic constraint [2] into the algorithm.

To determine an learning algorithm which minimizes the loss
function (13), we calculate an infinitesimal increment,

dL(W(z; k)) = L(W(z; k) + dW(z; k))� L(W(z; k)); (20)

corresponding to an incrementdW(z; k). Simple algebraic and
differential calculus yields

dL(W(z; k)) = '
T (y(k))dV(z; k)y(k)� trfdV0(k)g; (21)

wheredV(z; k) is defined as

dV(z; k) = dW(z; k)W�1(z; k); (22)

and trf�g denotes the trace operation. This gives the following
learning algorithm in terms ofdV(z; k) to minimize (13),

�Vp(k) = ��k dLW(z; k)

dVp(k)

= �kfI�p � '(y(k))yT (k � p)g: (23)

The stationary points of (23) satisfy

Ef'i(yi(k))yi(k)g = 1: (24)

In other words, the learning algorithm (23) forcesfyi(k)g to have
constant magnitude. This might be a problem form > n if we do
not know the number of source signals. To avoid this drawback,
we follow the proposal on a nonholonomic constraint that was ap-
plied to blind source separation [2]. We propose to replace the
identity matrix by am�m diagonal matrix�p(k) whoseith di-
agonal element is given by'i(yi(k))yi(k�p). Then, the modified
algorithm is

�Vp(k) = �kf�p(k)�p � '(y(k))yT (k � p)g: (25)

Therefore, the learning algorithm in terms ofdW(z; k) to mini-
mize (13) has the form

�Wp(k) =

LX
r=0

�Vp�r(k)Wr(k)

= �kf�0(k)Wp(k)

� '(y(k � L))
LX
r=0

W
T
L�r(k)y(k � p� r)g:

(26)

Note that as in [4], the second term in the right-hand side of (26) is
computed using the values delayed byL to avoid the noncausality.

4. COMPUTER SIMULATIONS

We present one exemplary computer simulation result here. Two
source signals consist of random variables that are uniformly dis-
tributed over the binary setf+1;�1g. Three convolutive mixtures
were generated through the following multivariate FIR channel:

x(k) = H0s(k) +H5s(k � 5) +H10s(k � 10) + v(k); (27)

where

H0 =

2
4 �:9239 :9924
�:8228 �:9845
:7987 �:3449

3
5 ;H5 =

2
4 �:4465 :5576

:4386 �:5137
:5345 �:5119

3
5 ;

and

H10 =

2
4 �:0768 �:1865
�:2917 �:0029
�:1011 �:0511

3
5 :

The white Gaussian noise was added by the level of SNR=20dB.
Two spatio-temporal decorrelation algorithms (17)-(18) and (26)
were tested. For both algorithms, the linear learning, i.e.,'i(yi) =
yi was used. The length of delay,L was setL = 20. The constant
learning rate�k = :0005 was used for both algorithms.

The outputy(k) was fed into a linear feedforward network
described by

z(k) = U(k)y(k); (28)

for further separation. Any ICA algorithm can be applied to update
U(k). In this simulation, we have used

U(k + 1) = U(k) + �kfI� fT (z(k))z(k)gU(k); (29)

wheref(z(k)) is a elementwise cubic nonlinear function, i.e.,

fi(zi(k)) = jzi(k)j2zi(k): (30)

To detect the number of sources, we have checked the spread of
eigenvalues of the covariance matrix,Efy(k)yT (k)g = Q�QT

(see Figure 2). Three eigenvalue were 1.58, 1.28, and .03, so we
can decide that there are two sources.

For performance measure, we have computed mean square er-
ror (MSE) after the arbitrary delay induced by the algorithm is
eliminated. MSE with respect to each recovered signal was com-
puted using a 50 point rectangular window (see Figures 3 and 4).
The averaged value of MSE over the duration [10000,15000] was
summarized in Table 1. It can be observed that the performance of
the natural gradient learning in this task is slightly better than that
of standard gradient.

5. CONCLUSIONS

We have presented two spatio-temporal decorrelation learning al-
gorithms for updating the linear feedforward network with FIR
synapses. The algorithms have been derived from an information-
theoretic viewpoint using both standard gradient and the natural
gradient. We incorporate a nonholonomic constraint into the natu-
ral gradient algorithm so that the resulting algorithm tolerates the
overdetermined case. The demonstration of the algorithms was
shown by applying them to multichannel blind deconvolution task.
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Figure 2: The spread of eigenvalues of covariance matrixRyy.

0 5000 10000 15000
10

−2

10
−1

10
0

number of iterations

M
S

E

0 5000 10000 15000
10

−2

10
−1

10
0

number of iterations

M
S

E

(a) (b)

Figure 3: The mean squared error: (a) the MSE ofz1(k) w.r.t
s1(k); (b) the MSE ofz2(k) w.r.t s2(k).
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