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ABSTRACT
In this paper we address the problem of sound source localization
in the presence of impulsive noise for application in immersive
telepresence and teleconferencing. Traditional Gaussian modeling
of noise signals fails when the signals exhibit impulsive behav-
ior. A new model is used, namely the Symmetric�-Stable (S�S),
which can better account for the outliers that exist in real-world
signals. Real data is used to compare the performance of both the
Gaussian and the�-stable models. We demonstrate that the�-
stable model gives a much better approximation to the noise signal
than the Gaussian model.

Furthermore, we study the problem of Time Delay Estimation
(TDE) and we demonstrate the shortcomings of TDE techniques
based on second-order statistics when the noise is ofS�S na-
ture. We propose an alternative to second-order based methods,
based on Fractional Lower-Order Statistics, and demonstrate the
achieved improvement via simulation experiments.

1. INTRODUCTION

Although several distributions exist that are good candidates for
signal modeling, it is common in the literature to use the Gaussian
distribution model. The majority ofTime Delay Estimation(TDE)
[1, 2] methods proposed so far for audio applications assume a
Gaussian noise signal and use second or higher-order statistics to
locate the source. A drawback of this assumption is that should
the signal deviate from the Gaussian model, the method becomes
suboptimal and in many cases unusable.

In this paper we first assume a Gaussian noise signal and com-
pare it with real measured data in a real-world teleconferencing
environment. We then proceed to describe the class of�-stable
distributions, and show that this class of distributions gives a more
accurate model of the measured audio signals.

The �-stable model is then applied to the problem of time
delay estimation using both a traditional second-order statistics
method (PHAT - Phase Transform Method [1]) as well as aFrac-
tional Lower-Order Statisticsmethod (FLOS-PHAT). We show
that when the Gaussian noise assumption fails – and instead the
�-stable distribution is a better approximation for the noise – then
the FLOS-PHAT algorithm gives better detection than the PHAT.

2. ALPHA-STABLE DISTRIBUTIONS

The�-stable distribution is more impulsive than the Gaussian, and
is appealing because it satisfies theStability Property, as well as

theGeneralized Central Limit Theorem[3, 4] .
Although there is no closed form solution for the probability

density function of�-stable distributions, the characteristic func-
tion is given by

'(t) = exp (j�t� jtj� [1 + j�sign(t)!(t; �)]) (1)

in which � is thecharacteristic exponentsatisfying0 < � � 2.
The characteristic exponent controls the heaviness of the tails of
the density function. For low values of� the tails are heavier and
thus the noise is more impulsive, while for a larger� the distribu-
tion exhibits less impulsive behavior. Thelocation parameteris
denoted by� and corresponds to the mean for1 < � � 2 and
the median for0 < � � 1. Thedispersionparameter () behaves
similarly to the variance, and is in fact equal to one-half the vari-
ance in the Gaussian case (� = 2). Finally, the parameter� is the
index of symmetry.

In this paper, we will deal with the class ofSymmetric�-Stable
(S�S) distributions (� = 0) with finite mean,i.e. 1 < � � 2. It
should be noted that the class of�-stable distributions, does not
possess finite second (or higher) moment statistics. In fact,�-
stable distributions with� 6= 2 have finite moments only for order
p < �.

3. ALPHA-STABLE MODELING OF SOUND

Several methods have been proposed for the estimation of the pa-
rameters of the�-stable distribution [3, 5]. For audio signals we
can assume that the distribution will be of theS�S class. In this
paper we use thePositive-Order and Negative-Order (Sinc) Func-
tion and theLogarithm ofS�S processestimation methods.

To demonstrate the heavy-tailed nature of sound, several mea-
surements were taken in a typical noisy environment. We then
estimated the� and parameters assuming that the distributions
of the measured signals were of theS�S type (which includes
the Gaussian case). As expected the mean was zero for large data
samples.

In Fig. 1 we show theProbability Density Function(PDF) and
Amplitude Probability Density(APD) of the real measured data
and compare it to: (i) a Gaussian distribution with the same vari-
ance as the entire data set; (ii) a Gaussian distribution with the
same variance as the bulk of the data. The variance for this case is
found after the tails above 30% of the maximum amplitude are cut
off; and (iii) aS�S matching the calculated� and. A histogram
is plotted in the PDF graph, while the sum of all data values whose



Figure 1: Comparison of the Gaussian,S�S, and real data PDF
and APD’s.

amplitude exceeds the horizontal axis value is used for the APD
graph.

Although it may seem under casual observation that the Gaus-
sian with a variance calculated from the bulk of the data might
be a good fit, a careful examination of the PDF curves shows that
the Gaussian approaches zero probability much faster than the real
data histogram. This can be seen more clearly in the APD graphs.
It should also be noted that there is a large amount of data with
amplitude greater than 80% that appear at�800 on the PDF plot
of Fig. 1 (data were normalized between -1000 and 1000).

The two graphs shown in Fig. 2 demonstrate the�-stable be-
havior of sound and are extracts from a much larger sequence of
� estimates. Both sequences displayed here are from a recording
made in a relatively quiet room with three people engaged in nor-
mal activities. In the first signal, the noise is mainly from the air
flow through the air-conditioning vent in the ceiling and from the
spinning hard drive in the computer. In the second signal there was
noise from slightly moving a chair, dropping a pen, and opening
a CD case. The� parameter of the measurements, as expected,
changes with time. This is in agreement with�-stable simula-
tions in which theS�S noise behaves in a relatively Gaussian-
like fashion for a large stretch of time, but occasionally presents
outliers of much higher amplitude. In fact most of the recordings
we made, stabilized in the region of� = 1:5 to � = 1:6 de-
pending on the noise environment. The time scale considered ex-
ceeded one million samples and the sampling rate was 44.1 kHz.
The two noise signals described above gave an� = 1:57 and

Figure 2: Estimated� values for noise recordings in a typical tele-
conference environment.

� = 1:53 respectively for a 22.7 second recording (1 million
samples). Other recordings that contained additional background
noise (from another computer) showed very similar behavior, with
a slightly lower overall value of�.

4. APPLICATION TO TIME DELAY ESTIMATION

Numerous applications can be envisioned in which microphone ar-
ray steering is desired. For example, in teleconferencing and telep-
resence systems it is often required to redirect a video camera so
that the person speaking is in the field-of-view. In multi-participant
environments it is desirable to provide spatially-selective speech
acquisition as well as noise and echo cancellation.

The localization of a source for audio applications adds com-
plexity not commonly found in other signal processing applica-
tions, which arises from the wideband nature of the signal. Ad-
ditionally, the statistics are not knowna-priori and they may vary
with time.

Inter-sensorTime Delay Estimation(TDE) is a method com-
monly used ([6] and ref. therein) to estimate the position of the
source using bearing information. The majority of TDE methods
proposed so far in audio applications use second or higher-order
statistics of the measurements to locate the signal of interest. A
drawback of these methods is that in impulsive noise or severe
interference environments, which as we showed above are best de-
scribed by the�-stable family of distributions, second or higher-
order statistics are not theoretically defined.

In this section we introduce a new method for TDE based on
Fractional Lower-Order Statistics(FLOS-PHAT) of the received
signals. We also examine the behavior of thePhase Transform
(PHAT) algorithm, which uses second-order statistics, under sta-
ble noise. We show that when the Gaussian noise assumption fails,
then the FLOS-PHAT algorithm gives better detection than the
PHAT.

4.1. Mathematical Formulation

Consider a two-element microphone array receiving

r1(t) = x(t) + n1(t) and r2(t) = x(t� �) + n2(t) (2)

in which the noise componentsn1(t) andn2(t) are assumed to be
zero mean and uncorrelated with the desired speech signalx(t).



The goal is to estimate the delay� from measurements ofr1
andr2, in order to be able to localize the sound sourcex(t). We
are interested in localizing wideband signals, hence we transform
the measurements into the frequency domain

R1(k) = [X(k) +N1(k)]

R2(k) = [X(k) � e�j!k� +N2(k)] (3)

The second-order cross-correlation function, in the frequency do-
main can then be found (4). Note that the signal-noise and noise-
noise cross terms are zero according to our assumptions above.
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4.1.1. Phase Transform Method

A fast method to use for the estimation of the delay between two
signals is thePhase Transformmethod [1]. In PHAT the signal
cross spectrumC

R1R2
(k) is smoothed by a window inversely pro-

portional to the magnitude cross spectrum.

W (k) =
1

jC
R1R2

(k)j
(5)

This in turn gives a weighted cross correlation function
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The inverse Fourier transform generates a sharp peak in the time
domain corresponding to value of the delay� . Although this
method was expected to be quite sensitive to noise, our simula-
tions showed that it performed well even for low SNR’s.

However, when the process deviates from the ideal Gaussian as-
sumption, and is better characterized by the�-stable class of dis-
tributions, performance degrades significantly as we demonstrate
in Section 5 below.

4.2. TDE in Heavy-Tailed Noise

4.2.1. FLOS-PHAT

Thecovariationof two signals,x andy is

[X;Y ]� =

Z
S

xy
��1

�(ds) =
E(XY <p�1>)

E(jY jp)
y (7)

in which S is the unit circle,�(:) is the spectral measure of the
S�S random vector (X,Y),1 � p < � andy<k> = jyjk�1 y�.

For�-stable distributions, the frequency domain representation
of a signal does not converge asT ! 1, but does exist for finite
T (i.e. after smoothing by a window) [7]. Thus we can express
the received signals in the frequency domain as shown in eq. (3).
Using the properties ofS�S distributions [8], and assuming that

both the noise and signal have the same distribution, we can now
form the covariation
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in whichB is a real and positive number. We can again define a
smoothed covariation measure
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As in the PHAT transform case, the peak in the time domain, re-
sulting from the inverse Fourier transform ofD

R1R2
, will corre-

spond to the delay� .
It has been shown [9] that an even better measure is theFrac-

tional Order Correlation Functiondefined as:
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Based on this we define [10] the FLOS-PHAT method
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whose inverse Fourier transform will again result in a sharp peak
in the time-domain, corresponding to� .

5. SIMULATION RESULTS

To test the performance of the above algorithms we must make use
of estimation techniques due to the absence of second and frac-
tional lower-order statistics. In the case under consideration, the
statistics of the problem are not known and they vary with time.
The algorithm therefore must be fast and able to adapt to new data
and statistics. The simple method suggested in this paper is based
on the use of blocks of data and can be summarized as follows: a
block of 1024 samples is obtained from each microphone and their
FFT is evaluated. The instantaneous second and lower-order statis-
tics (in the frequency domain) are found and a weighted-average
statistic is obtainedi.e.�
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in which � is theadaptation factorsatisfying0 � � � 1. The
PHAT or FLOS-PHAT algorithm is applied using the appropriate
weighted-average statistic and the process is repeated.

An important point here is to define an SNR measure. Because
power is not defined for�-stable distributions, the conventional
definition of SNR can not be used. Two alternative definitions of



Figure 3: Comparative Performance of the PHAT and FLOS-
PHAT methods with� = 0:0125 and a = b = 0:2.
Dashed line: PHAT, Solid line: FLOS-PHAT

� 1.0 1.2 1.4 1.6 1.8 2.0

GSNR Effective-SNR
0 -52.50 -35.80 -24.79 -15.43 -8.18 -2.94
6 -41.44 -25.45 -15.87 -8.40 -1.95 3.06

12 -28.97 -16.59 -7.43 0.13 4.69 9.06
25 -2.01 4.15 11.36 16.29 19.35 22.06

Table 1: Correspondence of GSNR and averageEffective-SNR for
the specific noise present in the measurements.

SNR have been proposed [11]. In this paper we use theGeneral-
ized-SNR, defined as the ratio of the signal average power to the
dispersion of the noise total in the finite interval of interest

GSNR= 10 log
10
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!

(13)

The algorithm converges very fast in about five to ten blocks of
data (depending on the GSNR) and then stabilizes until an outlier
appears in the noise. The results obtained were based on a set of
Monte-Carlo runs. Each run starts with a “wrong delay” vector of
statistics and so the algorithm has to adapt to the statistics of the
signal. After the algorithm reaches steady state, data is gathered
to form a “hit/miss” performance curve. In total, 4000 values for
each point were considered to obtain the curves in Fig. 3.

The tests were all done with a constanta = b = 0:2 value and
for GSNR’s of 0, 6, 12 and 25 dB. The comparative values of the
GSNR andEffective-SNR – defined as the average signal power
over the average noise power in the finite interval of interest – are
summarized in Table 1.

Our results indicate that in impulsive noise conditions, the
FLOS-PHAT method greatly outperforms the PHAT method for
Time Delay Estimation, sometimes by as much as 50% except for
the Gaussian (� = 2) case in which the PHAT performs better.

6. CONCLUSIONS

In this paper we presented a method for modeling the noise en-
countered in audio environments based on the symmetric�-stable
class of distributions. Our results show that noise signals in a typi-
cal office have an� in the range of 1.5 to 1.6, which deviates from
the Gaussian case (� = 2:0) that is typically assumed.

Based on these findings that are supported by our measurements
in a real-world environment, we have presented a new method
for adaptively steering microphone arrays in the presence of such
S�S noise. Our method, based on fractional lower-order statis-
tics of the measurements, performed better than the second-order
based PHAT algorithm, while at the same time adding little com-
putational expense. It is a simple algorithm that gives very good
performance even for small values of�, and can be applied to the
speaker tracking problem for real-time applications.

The enhanced performance of the FLOS-PHAT over the PHAT
method demonstrated in this paper shows the advantages of using
�-stable distributions in audio applications. Further research di-
rections include modeling the correlation structure of heavy-tailed
noise using sub-Gaussian processes as well as other impulsive
multidimensional distributions and studying algorithms based on
negative order moments.
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