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ABSTRACT
This paper presents a statistical analysis of the Least Mean

Square (LMS) algorithm when a zero-memory nonlinearity
appears at the adaptive filter output. The nonlinearity is modelled
by a scaled error function. Deterministic nonlinear recursions are
derived for the mean weight and mean square error (MSE)
behavior for white gaussian inputs and slow adaptation. Monte
Carlo simulations show excellent agreement with the behavior
predicted by the theoretical models. The analytical results show
that a small nonlinear effect has a significant impact on the
converged MSE.

1. INTRODUCTION

The LMS algorithm is the most popular algorithm for real-
time adaptive system implementations. It has been employed in
many areas, such as modelling, control, beamforming and
equalization. In recent years, this algorithm and its variants have
often been  applied to active noise and vibration control (ANC)
[1]. The behavior of the LMS algorithm in ANC sytems can be
affected by distortions caused by the power amplifiers (including
saturation) and the nonlinear behavior of the loudspeakers and
transducers.

Several researchers have studied the statistical behavior of
the LMS algorithm with nonlinearities applied to the error or
data signals [2], [3], [4]. These results, however, do not explain
the behavior of the algorithm with a nonlinearity at the adaptive
filter output.

This paper investigates the statistical behavior of the system
in Fig.1. g y( )  is a zero-memory saturation-type nonlinearity.
This block diagram could model  the nonlinear effects of wide-
band acoustical transducers in ANC systems, for example.

Deterministic nonlinear recursions are derived for the mean
weight and MSE behaviors for white gaussian inputs,  slow
adaptation and the degree of nonlinearity (DN) for the saturation
nonlinearity.  Here DN is defined as the ratio of  the  power at the
input to the nonlinearity divided by σ2,  the   saturation parameter
of  g y( ) .

As DN  approaches zero,  the well-known linear system
identification equations are obtained from the new recursions.
The results show that very small DN can substantially affect the

algorithm behavior and the achievable level of cancellation. The
theoretical predictions show excellent agreement with Monte
Carlo simulations.

2. ANALYSIS

2.1. The Analysis Model
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the behavior of ( )g y  can be varied between that of a linear

device and that of a hard limiter by changing σ.

The LMS weight update equation is:

( ) ( ) ( )W W Xn n e n n+ = +1 ( ) µ  (1)

where:

( ) ( ) ( )
( ) ( ) ( ) ( )[ ]

e n d n y n

n z n g n n

q

T T

= −

= + −     W X W Xo (2)



Wo

W(n)

LMS

Σ

g(y)

x(n) d(n)

z(n)

y(n) yq(n)

e(n)

+
+

_

Figure 1. Block diagram of the system analyzed.

resulting in:
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( )x n  is assumed white and gaussian, ( ) ( ){ }E n nT
xX X I= σ2 .

2.2. Mean Weight Behavior

Taking the expectation of (3) conditioned on ( )W n  yields:
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The expectation of the nonlinear term can be evaluated
using Bussgang’s theorem [5], yielding:
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Substituting (5) in (4) we have:
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Assuming µ sufficiently small so that the weights change

slowly, the fluctuations of ( )W n  about ( ){ }E nW  have a

negligible effect on the average behavior of the weights over time
[6]. Thus, (6) can be approximated by:
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Now DN = η
σ

σ
2
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Recursion (7) reduces to the well-known LMS mean weight
recursion [7 - Ch. 6], [8] as the DN approaches zero. Using the
orthogonality principle ( ( ){ }lim ( )

n
E e n n

→∞
=X 0 ), (2) and (5),

it can be shown that
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Hence, the mean weights converge to a scaled version of

the unknown system response. As η2 1→ , the mean
converged weights will grow without bound.  Eq. (7) is

unstable and has no stationary points for η2 1> . As

σ → ∞ , η2 0→  and k → 1 as expected for the linear case.

If ( )W 00 = , the solution of (7) is given by

( ){ } ( )E n k n nW W o=  for all (9)

Thus, using (9) in (7), a family of recursions in the scale
factor ( )k n  can be defined as
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Eq. (10) has stationary points at k =
−

1

1 2η
. If

η2 1≥ , (10) is unstable and ( )k n  does not converge. The

behavior of (10) is parametrized on η  and is essentially

independent of Wo .

2.3. Mean Square Error

Squaring (2) and taking its expectation conditioned on
( )W n  yields:
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The first expectation is given by (5).  The second one can be
evaluated following the steps in [9-Appendix I] as:
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Using (5) and (12), (11)  becomes:
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For µ sufficiently small (slow adaptation), (13) reduces to:
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where ( ){ }E nW  can be evaluated using (7). Here again, it can

be easily verified that (11) reduces to the conventional LMS
MSE recursion for slow adaptation as σ → ∞ . Also, for

( )W 00 = , (9) can be used in (14) leading to
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3. SIMULATIONS

This section presents simulations which verify the accuracy
of the analytical models (7) and (14), as well as (9), (10) and
(15). Consider the system in Fig. 1 with the following
parameters:

[ ]W o = 0 4130 0 4627 0 4803 0 4627 0 4130. . . . .
T

,

W Wo oT = 1, ( )W 00 = , µ = 0 01. , σ x
2 1=  and σ z

2 610= − .

Fig. 2 shows the mean behavior of the third weight

for σ2 2= , 4 and 1000 (η2 05= . , 0.25 and 0.001). These cases
correspond to a large DN, a small DN  and nearly linear system.
The theoretical curves using (7) (continuous curves) and Monte
Carlo simulations (10 runs) (ragged curves) show excellent

agreement. The behavior of the other weights are similar. The
asymptotes (derived from (8))  are 0.679, 0.554 and 0.481, in
agreement with the curves in Fig. 2.

Fig. 3 shows the MSE behavior for σ2 = 2, 15 and 1000

( η2 0 5= . , 0.067 and 0.001). Again, there is excellent  agreement
between theory (Eq. (14)) and simulation results (averaged over
100 runs).  Note the dramatic reduction in converged
cancellation performance for  the nonlinear cases (a) and (b) as
compared to the nearly linear case (c)

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

(c)

(b)

(a)

Fig. 2. Mean behavior of the third coefficient. (a) η2 = 0.5; (b) η2

= 0.25 and (c) η2 = 0.001.
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Figure 3. Mean square error. (a) η2 = 0.5; (b) η2 = 0.067 and (c)
η2 = 0.001.

Fig. 4 shows the function  g y( )  and the amplitude

histograms of ( )y n obtained from the  simulations for  all 1200

iterations and averaged over 10 runs. Fig. 4 clearly shows that
the system was driven into nonlinear operation.  Small DN can
have a significant effect on the achievable cancellation level as
shown by Figures 2-4 (> 20 dB from curves (c) to (b) in Fig. 3).  
Hence,  the present analysis is quite important for design
purposes.
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Figure 4. Functions g y( )  and respective histograms of

( )y n obtained from simulation. (a) η2 = 0.001, (b)

η2 = 0.067, (c) η2 = 0.25 and (d) η2 = 0.5.

4. CONCLUSIONS

This paper presented a statistical analysis of the LMS
algorithm with a zero-memory nonlinearity at the adaptive filter
output. Recursive equations have been derived for the mean
weight and mean square error behaviors for white gaussian inputs
and slow adaptation. These expression were shown to be a simple
function of the system’s DN.

The theoretical expressions predict the statistical behavior
of the algorithm during all phases of the adaptation process for
all values of  DN.  The analytical results show that small DN has
a significant impact on the achievable cancellation level.

5. REFERENCES

[1] Kuo S. M. and Morgan D.R., Active Noise Control
Systems: Algorithms and DSP Implementations, New York:
John Wiley, 1996.

[2] Duttweiler D.L. “Adaptive Filter Performance with
Nonlinearities in the Correlation Multiplier”, IEEE
Transactions on Acoustic, Speech and Signal Processing,
30(4):578-586, 1982.

[3] Bershad N.J. “On Error Saturation Nonlinearities in LMS
Adaptation”, IEEE Transactions on Acoustics, Speech and
Signal Processing, 36(4):440-452, 1988.

[4] Douglas S.C. and Meng T.H.Y “Normalized Data
Nonlinearities for LMS Adaptation”, IEEE Transactions on
Signal Processing, 42(6):1352-1365, 1994.

[5] Bussgang J.J., “Cross-correlation functions of amplitude-
distorted gaussian signals,” Tech Rep. 216, Research
Laboratory of Electronics, MIT, Cambridge, MA, March
1952.

[6] Bershad N.J., Shynk J.J., Feintuch P.L. “Statistical Analysis
of the Single Layer Backpropagation Algorithm: Part I –
Mean Weight Behavior”, IEEE Transactions on Signal
Processing, 41(2):573-582, 1993.

[7] Widrow B. and Stearns S.D., Adaptive Signal Processing,
Prentice-Hall, N.J., 1985

[8] Haykin S. Adaptive Filter Theory, Prentice Hall, second
edition, 1991.

[9] Bershad N.J., Shynk J.J., Feintuch P.L. “Statistical Analysis
of the Single Layer Backpropagation Algorithm: Part II –
MSE and Classification Performance”, IEEE Transactions
on Signal Processing, 41(2):583-591, 1993.

(c) (d)

(a) (b)


