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ABSTRACT

An improved spectral subtraction algorithm for enhancing
speech corrupted by additive wideband noise is described.
The artifactual noise introduced by spectral subtraction
that is perceived as musical noise is 7 dB less than that
introduced by the classical spectral subtraction algorithm
of Berouti et al. Speech is decomposed into voiced and un-
voiced sections. Since voiced speech is primarily stochastic
at high frequencies, the voiced speech is high-pass �ltered to
extract its stochastic component. The cut-o� frequency is
estimated adaptively. Multi-window spectral estimation is
used to estimate the spectrum of stochastically voiced and
unvoiced speech, thereby reducing the spectral variance. A
low-pass �lter is used to extract the deterministic compo-
nent of voiced speech. Its spectrum is estimated with a
single window. Spectral subtraction is performed with the
classical algorithm using the estimated spectra. Informal
listening tests con�rm that the new algorithm creates sig-
ni�cantly less musical noise than the classical algorithm.

1. INTRODUCTION

In the past two decades a variety of speech enhancement
algorithms have been proposed. Spectral subtraction [2] is
an algorithm that has been extensively studied because of
its simplicity and e�ectiveness.

However, the original spectral subtraction algorithm [2]
introduces a perceptually annoying artifact which is com-
monly referred to as musical noise. The musical noise is
caused by large statistical uctuations in the spectral esti-
mate of the noisy speech. In [1], the authors proposed an
algorithm to reduce the level of perceived musical noise by
subtracting an overestimate of the noise spectrum and pre-
venting the resultant spectral components from going be-
low a preset minimum value. By preventing the resultant
spectral components from going below a preset minimum
value, the level of perceived musical noise is reduced, but
background noise remains. When a high signal-to-noise ra-
tio (SNR) is required, and the preset minimum value must
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be reduced, the unmasked musical noise becomes distract-
ing. Therefore it is desirable to develop an algorithm that
reduces the level of musical noise. This can be achieved
by reducing the variance of the spectral estimate of the
stochastic component of speech with spectral smoothing.

The stochastic component consists of the high frequency
part of voiced speech [6, 7] and unvoiced speech. In this
paper the stochastic component of voiced speech is adap-
tively extracted with a high-pass �lter. The spectrum of
the stochastic component of speech|voiced speech at high
frequencies and unvoiced speech|is smoothed with Thom-
son's method of multi-window spectral estimation (MWSE)
[8]. The resulting reduction of variance reduces musical
noise, and therefore reduces the background noise neces-
sary for masking.

The spectrum of the deterministic component of speech
|low-pass �ltered voiced speech|is estimated with a single
window. Multiple windows would damage the harmonic
structure and decrease intelligibility.

2. STOCHASTICITY OF VOICED SPEECH

It is generally believed that there is a stochastic component
present in the excitation function of voiced speech [4, 7].
As a result, the higher formants of voiced speech are ex-
cited randomly, not periodically. In [6] we de�ned a quan-
tity called normalized variance that measures the frequency
dependence of the relative strengths of the stochastic and
deterministic components of speech. We showed that for
voiced vowels the normalized variance is small at low fre-
quencies, con�rming the deterministic nature of speech. At
high frequencies, the normalized variance reaches its maxi-
mum value of 1, indicating that voiced speech is primarily
stochastic above some cut-o� frequency fc. Figure 1 shows
the frequency dependence of the estimated normalized vari-
ance of one utterance of the vowel /I/. This utterance is
essentially stochastic above 4 kHz. We also observed that
the cut-o� frequency (fc) above which voiced speech be-
comes stochastic varies with pitch, phoneme, and speaker.
Therefore in the new denoising algorithm, this cut-o� fre-
quency is estimated adaptively for every frame classi�ed as
voiced.
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Figure 1: Estimated normalized variance of an utterance of
the vowel /I/. Values of 0 and 1 indicate entirely determin-
istic and stochastic speech, respectively. Despite statistical
uctuations in the estimate, it is clear that this utterance
is stochastically excited at high frequencies.

3. EXPLOITING THE STOCHASTICITY OF SPEECH

In [7] the stochasticity of voiced speech was exploited to im-
prove the performance of speech compression and synthesis
algorithms. In [4], the author introduced the Dual Excita-
tion model which represents speech as the sum of a voiced
and an unvoiced component. The model was later applied
to speech enhancement and the fundamental frequency and
harmonic amplitudes of the voiced component of speech
were estimated using a minimum mean-squared error ap-
proach [5, 9]. The voiced component was then constructed
from these estimated parameters. The unvoiced compo-
nent was obtained by subtracting the estimated voiced com-
ponent from the speech signal. Di�erent speech enhance-
ment algorithms were applied to the voiced and unvoiced
components. In this paper the stochastic component of
speech is extracted by a di�erent and computationally sim-
pler algorithm (high-pass �ltering), and a more sophisti-
cated method of spectral smoothing is employed (MWSE).

3.1. Overview

For each frame, the energy of noisy speech is compared to
a threshold to classify the frame as unvoiced (including si-
lence) or voiced. For voiced speech, an algorithm similar
to the one described in [7] is used to determine the cut-o�
frequency (fc) above which speech in this frame is stochas-
tic. The voiced speech is then divided into two bands using
linear phase FIR �lters with cut-o� frequency fc.

Both the high-pass part of voiced speech and unvoiced
speech are stochastic. MWSE is used to estimate their spec-
tra, thereby reducing the variance of the spectral estimates.
A single window (the �rst discrete prolate spheroidal se-
quence) is used to determine the spectrum of the low-pass
deterministic part of voiced speech, thereby preserving its
harmonic structure.

Once the spectral estimates are obtained, the algorithm
described in [1] is used to enhance the speech with spectral
subtraction.

3.2. Cut-o� frequency (fc) estimation

For each frame classi�ed as voiced, the fundamental fre-
quency is estimated with a peak-picking algorithm per-
formed on a smoothed spectral estimate. Here the goal of
spectral smoothing is to reduce the variance in the spectral
estimate near the harmonic frequencies. The cut-o� fre-
quency is then determined as the highest frequency below
which the separation between adjacent peaks is approxi-
mately equal to the fundamental frequency. Only peaks
that are signi�cantly greater than background are consid-
ered and small gaps in the harmonic structure are ignored.
This estimated cut-o� frequency is smoothed by a median
�lter operating on three consecutive frames and rounded
upward to the nearest multiple of 500 Hz. Pre-designed low-
pass and high-pass Parks-McClellan optimal linear phase
FIR �lters with cut-o� frequencies at multiples of 500 Hz
are used to separate the stochastic and deterministic com-
ponents of voiced speech.

3.3. Multi-window spectral estimation

Thomson's method [8] of multi-window spectral estimation
(MWSE) is used to estimate the spectrum of high-passed
voiced speech and unvoiced speech in order to minimize the
variance of the spectral estimates. For a given spectral reso-
lution, multi-window spectral estimation entails computing
K = 2NW � 1 individual estimates of the spectrum with
discrete prolate spheroidal sequence windows [8], and then
combining these estimates to form a single spectral esti-
mate. Here N is the number of points in a window and
W is the frequency resolution of the spectral estimate. If
the spectrum is at within the frequency interval [
 �W ,

+W ] centered about frequency 
, then the variance of the
spectral estimate is reduced by a factor of K with respect to
that of a single estimate. For �xed N and W , the variance
of a multi-window spectral estimate is smaller than that
of other spectral smoothing techniques, e.g., the weighted
overlapped segment averaging spectral estimator [3].

4. SPEECH ENHANCEMENT

The new speech enhancement system is summarized in Fig-
ure 2. High-passed-voiced and unvoiced speech are en-
hanced by the same algorithm. A di�erent algorithm is
used to enhance low-passed voiced speech.

4.1. Enhancing low-passed voiced speech

In the low-frequency band of voiced speech, the spectrum is
estimated from a windowed fast Fourier transform (FFT).
The �rst discrete prolate spheroidal sequence is used for the
window.

We adopt the algorithm described in [1] to perform spec-
tral subtraction. The denoised low-passed voiced speech
signal is given by

rd;l[n] = IFFT

�q
Ŝl[m] � ej�l[m]

�
; (1)

where IFFTf�g denotes the inverse fast Fourier transform,
�l[m] is the phase of the FFT of the windowed low-passed
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Figure 2: Adaptive two-band spectral subtraction system.
The noisy and denoised speech samples are denoted by r[n]
and rd[n].

noisy speech, and

Ŝl[m] =

�
Rl[m]� �Nl[m]; if Rl[m] > (�+ �)Nl[m]
�Nl[m]; otherwise.

(2)
The frequency and time indices are m and n, respectively.
Rl[m] is the squared magnitude of the FFT of the windowed
low-passed noisy speech, Nl[m] is the spectral estimate of
the low-passed noise obtained during silences, � is a positive
\subtraction factor," and � is a positive \spectral oor pa-
rameter" [1]. The subtraction factor � decreases with the
segmental SNR in a manner speci�ed in [1]. Its value at
0 dB segmental SNR is denoted by �0, and together with
the values for �, is given in Table 1. MWSE is used to
compute Nl[m].

4.2. Enhancing high-passed-voiced and unvoiced speech

For high-passed-voiced and unvoiced speech, MWSE is used
to reduce the variance of the spectral estimate. Speci�cally,
Rl[m] in equation (2) is replaced by

Rh[m] =

KX
k=1


k
h[m]Rk

h[m] or R[m] =

KX
k=1


k[m]Rk[m];

(3)
where Rk

h[m] and Rk[m] are the squared magnitudes of
the FFT of the windowed high-passed-voiced and unvoiced
noisy speech with the kth discrete prolate spherical se-
quence as the window, kh[m] and k[m] are the frequency-
dependent weighting factors calculated adaptively [8], and
K is the number of windows. Values for K are given in
Table 1. N and W are chosen to be 512 (the sampling fre-
quency is 16000 Hz) and 1/256. The number of windows
used is as large as possible, subject to the constraint that
the intelligibility of speech is not noticeably degraded.

The phase �l[m] is replaced by the phase corresponding
to R1

h[m] or R1[m]. The noise spectral estimate Nl[m] is
replaced either by Nh[m], the spectral estimate of the high-
passed noise, or N [m], the spectral estimate of the wide-
band noise. Both Nh[m] and N [m] are computed during
silences using MWSE.

Short gaps (silences) can be created where quiet un-
voiced vowels exist in the clean speech. In this case, short
quiet noise bursts are added to �ll the gaps. This helps
most when � = 0.
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Table 1: The spectral subtraction and spectral estimation
parameters.

5. RESULTS

Figure 3 shows spectrograms of clean and noisy TIMIT
speech. For the noisy speech, the average segmental SNR
is 0 dB. The noise is white.

Figure 4 shows spectrograms of speech denoised with
the algorithm of [1], and with the new algorithm, both
with � = 0. The musical noise, which appears as small
dark \islands," is clearly visible in the top panel, but is less
noticeable in the middle panel, corresponding to a reduc-
tion of 7 dB. The estimated cut-o� frequency fc is shown
at the bottom of the Figure. Note that there are signi�cant
portions of speech that lie above fc.

To mask the remaining musical noise (which some lis-
teners prefer), the values of � given in Table 1 are used.

Informal listening tests indicate that the intelligibility
of speech processed by both algorithms is about the same,
but the speech denoised by the new algorithm contains sig-
ni�cantly less musical noise.

All �gures were created with the SigniScopeR and are
plotted on a compressed z-axis scale.

6. CONCLUSIONS

An adaptive two-band spectral subtraction algorithm is de-
scribed. Gains over conventional algorithms come primarily
from exploiting the stochasticity of speech. The stochastic
component consists of the high frequency part of voiced
speech and unvoiced speech. The stochastic component of
voiced speech is adaptively extracted with a high-pass �l-
ter. The spectrum of the stochastic component of speech|
voiced speech at high frequencies and unvoiced speech|is
smoothed with Thomson's method of multi-window spec-
tral estimation. The resulting reduction of variance reduces
both the musical noise and the background noise necessary
for masking musical noise by approximately 7 dB.
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Figure 3: Top: Spectrogram of clean speech. Bottom: Spec-
trogram of noisy speech (average segmental SNR = 0 dB).
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Figure 4: Top: Spectrogram of denoised speech, algorithm
of [1], �=0. Middle: Spectrogram of denoised speech, new
algorithm, �=0. Bottom: Estimated cut-o� frequencies fc.


