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ABSTRACT
This paper investigates the performance of ordered statistics
decoding of linear block codes with binary differential phase-
shift-keying (2DPSK) transmission on the wide-sense-stationary
uncorrelated-scattering (WSSUS) Rayleigh fading channel. For
typical mobile speed 60 mph, tropospheric scatter radio
communication at carrier frequency 900 MHz and very low bit
rate video communication at transmission speed 32 kbit/s, the
channel is modeled as a frequency non-selective, slow fading
environment without inter-symbol interference (ISI). At bit error
rate (BER) 10-5, 34.5 dB and 38 dB gains compared to uncoded
2DPSK are obtained for the decoding of the (24, 12, 8) extended
Golay code and the (128, 64, 22) extended BCH code with
sufficient degree of interleaving.

1. INTRODUCTION

With the release of the ITU-T H.263 video coding standard [5],
video telephony at bit rate less than 32 kbit/s has become
realizable nowadays. However, as the coded video bitstreams are
highly compressed, they tend to be more susceptible to errors
induced from the transmission process than other type of data.
Many error control schemes have been proposed with regard to
robust video transmission. In general, they can be classified into
two categories: (1) techniques to reduce bit error rate (BER)
during transmission, e.g., forward error correction (FEC) [3]; and
(2) techniques to increase peak signal-to-noise (PSNR) as well as
subjective video quality after the corrupted video data are
received [6].

In this study, we are interested in the FEC schemes to protect
coded video data transmitted through radio communication
channel. In particular, the error performance of ordered statistics
decoding [3] on the wide-sense-stationary uncorrelated-scattering
(WSSUS) multipath channel [1] which exhibits uncorrelated
dispersiveness in time delay and Doppler shifts is investigated

This paper is organized as follows. Section 2 describes the
system design, in which ordered statistics decoding of block
codes, block interleaving and binary differential phase-shift-
keying (2DPSK) transmission are integrated to overcome the
bursty error channel. The log-likelihood ratio of received
symbols due to 2DPSK and the WSSUS channel is derived. In
Section 3, the error performance of ordered statistics decoding on
the WSSUS channel is analyzed for sufficient degree of
interleaving. Simulation results are presented in Section 4. A
summary and concluding remarks are given in Section 5.

2. SYSTEM DESIGN

2.1 System Structure

The WSSUS channel characterized by multipath and fading
exhibits bursty error features.  To effectively combat the noisy
channel, we propose the system which integrates ordered
statistics decoding of linear block codes with a block interleaver
[2, chap. 8, pp. 469]. The coded data is interleaved in such a way
that the bursty channel is transformed to a channel having
independent errors. In addition, a simple and effective non-
coherent detection scheme known as 2DPSK [2, chap. 5, pp.
274-278] is adopted in our design. The block diagram of the
proposed system is shown in Figure 1.

Figure 1. System block diagram. The discrete-time
representation associated with the shaded area is
illustrated in Figure 3.

2.2 Channel Model

The WSSUS channel model is determined by a two-dimensional
scattering function in terms of the echo delay due to multipath
effects and the Doppler frequency due to the mobile movement.
The Monte Carlo based approximation [1] assumes that the time-
varying channel is composed of M independent echoes. Each
echo corresponds to a phase φn, a delay n and a Doppler
frequency 

nDf , where φn, n and 
nDf  are continuous, mutually

independent random variables (RVs), 1 ��Q���0. The pdfs of n

and 
nDf  are shown to be proportional to the delay power spectrum

and the Doppler power spectrum, respectively [1]. We use
exponential distribution to model the delay power profile and the
Clarke’s spectrum [4, chap. 4, pp. 177-181] to model the Doppler
power spectrum, whereas the phase φn is uniformly distributed
from 0 to � .



Figure 2. The baseband model for communication over
the WSSUS fading channel.

Then the instantaneous channel impulse response at time t to an
impulse input at time W���  is approximated as
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To derive the discrete-time channel representation, we denote the
components of the overall baseband model as in Figure 2, where

{xk} is the data sequence, )(tg  and )(* tg −  are the time-

invariant impulse responses of the transmitter and receiver, )(~ tn

is a complex AWGN process, T is the symbol duration and }~{ kz

is the sampled output. The time-varying overall transmitter-
receiver plus channel impulse response is then given as
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where )()()( * tgtgtg total −⊗= .

Consider an H.263 video communication application on the
WSSUS channel with the data rate 32 kbit/s (including both
compressed video and channel coding redundancy), the mobile
speed 60 mph and carrier frequency 900 MHz. Consequently,

• symbol duration T = 31.25 µs;
• maximum Doppler frequency 

maxDf = 80 Hz;

• multipath duration Tσ ≈ 10-6 s [2, pp. 772];

• transmission bandwidth sB ≈ 32 kHz;

• coherence time cT ≈ 12.5 ms;

• coherence bandwidth cB  ≈ 1 MHz.

Because cs BB << , TTc >>  and TT σ>> , the channel is

modeled as a frequency non-selective, slow fading environment
without inter-symbol interference (ISI).

With the channel characteristics, the channel output at instant t =
kT given xk is transmitted is
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where }1,1{)1()1( 1 −+∈−=−= −⊕ kkk dbd
kx  is an interleaved code

bit, )2(, GFdb kk ∈ . And kh
~  is a complex, zero-mean Gaussian

process with Rayleigh distributed amplitude A and uniformly
distributed phase θ . Also, ikrkk jnnn ,,

~ +=  is a sample of the

noise process )()(~ * tgtn −⊗ , modeled as a zero-mean, complex
Gaussian RV with independent, identical components of variance

2/0N . The discrete-time representation is shown in Figure 3.

Figure 3. Discrete-time representation of the 2DPSK
modulator, the WSSUS channel and the receiver.

2.3 Likelihood Ratio

The value of received symbol is proportional to the log-
likelihood ratio for BPSK transmission on AWGN channels [3].
Hence, the hard-decision reliability of the received symbol is its
absolute value. As a result, ordered statistics decoder operates on
a block of received sequence directly for such systems.  In our
case, the likelihood ratio has to be re-derived to cope with
different channel characteristics and transmission strategy.
Because successive tap gains, 

1
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−kh , 
kh

~ , 
1

~
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correlated due to slow fading, we assume that the channel tap

gain θj
k eAh ⋅=
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Figure 4 illustrates the detection mechanism for the case
11 +== −kk xx . Let 

1

~
−kZ and 

kZ
~  denote the received random

symbols at time index k-1 and k, and define event
}~~~~,~~~~{ 111 zdzZzzdzZzE kkkkkk +<<+<<= −−− , where zd~  is a very

small deviation in the complex plane. Thus, the log-likelihood
ratio of the differentially encoded bit is given by
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where Xk-1 and Xk are the transmitted random symbols and
)(

1
~~ ⋅

−± kk NN
p  denotes the pdfs of the noise RVs 1

~~
−± kk NN .

Consequently, the associated reliability measure is defined as
|| kr , where

)~~Re( 1
*

−= kkk zzr . (6)

With the new reliability measure due to 2DPSK modulation, the
ordered statistics decoding is employed.



Figure 4. Graph description of the 2DPSK detection on
the slowly fading channel, where 11 +== −kk xx .

2.4 Ordered Statistics Decoding

Ordered statistics decoding reduces search space for maximum
likelihood decoding (MLD) performance by taking advantage of
the reliability information from the received symbols. To
illustrate the idea, consider the binary transmission system
described in Section 2.2 where a binary (N, K, dH) linear block
code C is used for error control over the discrete-time channel.
For each block of K bits from the input video sequence, a
codeword c  = (c1, c2,…, cN) in C is generated at the channel
encoder output, where ci is an element of GF(2), 1 ��i ��N.  The
{bk} sequence is formed by interleaving successive codewords.
With 2DPSK modulation, the sequence is differentially encoded,
mapped into the bipolar sequence {xk} and sent through the
channel. At the output of the likelihood-ratio calculator, the
corresponding real number sequence {rk} is received. By
deinterleaving {rk}, the block of received symbols r , associated
with the transmitted codeword c , is obtained, where r  = (r1,
r2,…, rN). The components of r  are independent for sufficient
degree of interleaving. The hard-decision of each symbol ri is
based on the sign of ri, whereas the associated reliability is
determined by | ri |.

For each r , the ordered statistics decoder performs two
SHUPXWDWLRQV�� 1�� 2), followed by two decoding steps, i.e., order-
0 and order-l decoding, where l is an integer, l�!���� 1 reorders
the components of each r � EDVHG�RQ� WKHLU� UHOLDELOLWLHV��ZKLOH� 2

reorders them again to find the K most reliable independent
(MRI) positions [4]. Thereafter, Order-0 decoding constructs a
codeword corresponding to the hard decision of the MRI
positions. This codeword is expected to have as few information
bits in error as possible. Furthermore, order-l decoding improves
the result obtained from order-0 decoding progressively until the
asymptotically optimum error performance is achieved. For
codes and channel signal-to-noise ratios (SNRs) of practical
interests, the optimum codeword candidate ∗c ,
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will most likely be found at a small value of l [4].

3. PERFORMANCE

In the following discussion, the initial reference symbol x0 is set
as +1.  Without loss of generality, we assume that all zero
codewords are sent through the discrete-time channel. For an

arbitrarily code bit ci = 0, the corresponding bipolar symbols
11 +== −kk xx  are transmitted. At the receiving end, the

likelihood ratio rk is obtained as
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For SNRs of practical interests, ikikrkrk nnnn ,,1,,1 −− +  is relatively

small compared with other terms. Hence, we approximate the
distribution of the received likelihood ratio at high SNRs as
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where 2σ  is the variance of the zero-mean Gaussian RV whose
envelope has the corresponding Rayleigh distribution. Assuming
sufficient degree of interleaving, the components of r
corresponding to the transmitted all-zero codeword are
independent. Denote ui as the symbol representing the likelihood
ratio at the i-th position after permutation 1λ , i.e. )(1 ru λ=  such

that |||||| 21 Nuuu >⋅⋅⋅>> . Note that the components of u  are

exactly the same as those of r , only the ordering is different. At
high SNRs, the marginal pdf of the ordered symbol is
approximated as
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Thus, the probability that the hard decision of the i-th symbol ui

is in error is given by
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The probabilities that the hard decisions of two or more ordered
symbols of sequence u  are in error can be evaluated in the same
way.

Define CMP  as the optimum bit error probability of soft-decision

decoding algorithms based on maximizing correlation metric. Let

blP  be the average bit error rate when there are more than l hard-

decision errors in the first K MRI positions of r . It follows from
union bound that the bit error rate )(lPb  of order-l decoding is

blCMb PPlP +≤)( .                                   (12)

Although the channel characteristics are different, the derivations
in [3] for evaluating blP  remain valid. To evaluate CMP , denote

the all zero codeword 01 =c . Thus, the probability of deciding

an arbitrary codeword 2c  as the estimated result is
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where ][)( Rj
R eE ωω =Φ  and 2w  is the Hamming weight of 2c .

The block error probability blockCMP ,  is bounded as
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where nd is the number of minimum-weight codewords in C. The

BER is approximated as blockCM
H

CM P
N

d
P ,≅  [7].

4. SIMULATIONS

In our simulations, the number of echoes M is 50 and the rolloff
factor of the raised cosine pulse shaping filter is chosen as 0.5.
Figures 4 and 5 depict the error performance of the (24, 12, 8)
extended Golay code and the (128, 64, 22) extended BCH code
with interleaving degree v = 200 and 50, respectively. For each
code, simulation results for various orders of decoding are
plotted in terms of BER vs. SNR. The SNR is defined as

0
2 / NAEb >< , where bE  is the energy per information bit, >< 2A  is

the time average of the Rayleigh amplitude. For the Golay code,
Figure 4 shows that order-1 decoding already achieves the
practically optimum performance, no significant improvement
can be obtained with higher order of decoding. At BER 10-5,
order-1 decoding of the Golay code with v = 200 has 34.5 dB
coding gain compared to uncoded 2DPSK. For the BCH code,
Figure 5 shows that order-3 decoding is practically optimum.
Order-3 decoding of the BCH code with v = 50 achieves 38 dB
coding gain over uncoded 2DPSK at BER 10-5. For the decoding
of the Golay code with v = 200, each received kr  is separated

from previous symbol 1−kr  by 200×24/32k = 0.15 sec, which is

much larger than the coherence time (§�������PV��RI�WKH�FKDQQHO�
For the decoding of the BCH code with v = 50, the separation is
50×128/32k = 0.2 sec. Hence for both cases, the successive
received symbols within a block are affected differently by the
channel. Simulation results show that no further performance
improvement can be obtained in both cases by increasing v.
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Figure 4. Performance of the (24,12,8) extended Golay
code with interleaving degree 200.
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Figure 5. Performance of the (128,64,22) extended BCH
code with interleaving degree 50.

5. CONCLUSION

In this study, ordered statistics decoding [3] is applied to the
WSSUS multipath channel to protect video sequence transmitted
at 32 kbit/s. Simulations are conducted over the channel with
2DPSK transmission for ordered statistics decoding of the (24,
12, 8) extended Golay code and the (128, 64, 22) extended BCH
code. The log-likelihood ratio due to 2DPSK and the WSSUS
channel is derived and its statistics after ordering is used to
analyze the system performance. Results demonstrate that the
purpose of error protection over the WSSUS channel can be
effectively achieved by ordered statistics decoding of channel
codes. This is important for delay constrained applications for
which ARQ is not feasible due to intolerable round trip delay.
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