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ABSTRACT

In this paper, we propose a novel boundary
detection approach for three-dimensional shape modeling.
Our method is based on finding surfaces of minimal
weighted area in a Riemannian metric.  In order to take
advantage of intensity information of images, we further
integrate this intensity information into the boundary
detection algorithm.   We apply this algorithm to identify
the inner and outer boundaries of the blood vessel wall in
magnetic resonance images, and assess its accuracy and
reproducibility.  Our algorithm is reasonably accurate
(about 2% difference in comparison with the manual
method) and highly reproducible.

1. INTRODUCTION

The original Snake model was introduced by
Kass, Witkin, and Terzopoulos [8].  A Snake is an open
or closed elastic curve represented by a set of control
points.  Finding contours of distinct features (specified by
the user a priori in an energy formulation) is done by
deforming and moving the elastic curve gradually from an
initial shape residing on the image toward the positions
where distinct features are to be extracted.  This
deformation process is guided by iteratively searching for a
nearby local minimum of an energy function, which
consists of the internal energy (a smoothness constraint of
the Snake curve: tension and bending) and the external
energy that indicates the degree of matching for features
(such as high image intensity for bright regions or large
gradient strength for edges).  This classical Snake model
can be generalized to a three-dimensional (3-D) model and
is known as the deformable surface model [13].

The geometric Snake model [4, 9] employs a
geometric approach for the classical Snake and utilizes a
level set approach for curve evolution [10, 11].  It was
shown that the geometric Snake model performs better
than the classical Snake model.  Further improvement was
done by providing the gradient of potential term of the

classical Snake model into the geometric Snake model and
is known as the geodesic active contours [5]. The basic
concept of the geodesic active contours is that two-
dimensional (2-D) object detection is based on computing
paths of minimal weighted length.  The geodesic active
contours was shown to be better than both the classical
Snake model and the geometric Snake model.  This 2-D
geodesic model was extended to a 3-D model by
computing surfaces of minimal weighted area [6] and was
implemented by the numerical algorithm for surface
evolution via level sets [10, 11].

In general, the geodesic active contours were to
find local minimal geodesics that are close to the initial
guess.  A global minimum Snake model [7] was proposed
to find the minimal geodesics between two end points.
This method is based on the interpretation of the Snake as
a path of minimal cost.  A numerical method was used to
find the shortest path which is the global minimum of the
energy among all paths joining the two end points.  The
advantages of the global minimum Snake model are easier
Snake initialization and no trapping in a local minimum.
In this paper, we extend this concept to three-dimensional
object detection and apply to 3-D magnetic resonance
(MR) image sequences.

Our goal in this study was to develop a computer
algorithm to identify the inner and outer boundaries of the
blood vessel wall in MR images.  We based this
algorithm on a 3-D Knowledge-based Global Minimum
Snake (KBGM-Snake) model developed specifically for the
various edge conditions found in MR images.  The
accuracy and reproducibility of this algorithm in measuring
lumen and outer wall boundaries and total wall area was
studied using in vivo MR images of human carotid
arteries.

This paper is organized as follows:  Section 2
describes a global minimum Snake model for three
dimensional object detection.  Section 3 presents the
proposed KBGM-Snake algorithm.  Simulation results are
presented in Section 4, which is followed by the
concluding remarks in Section 5.



2. 3-D Global Minimum Snake Model

The Global Minimum technique was first
introduced by Cohen and Kimmel [7].  This technique
detects the global minimum of an active contour (Snake)
modelÕs energy between two points.  This method finds a
path of minimal cost in a Riemannian metric.

The concept of this Global Minimum technique
can be extended to three dimensions (or two spatial
dimensions plus time) by computing surfaces of minimal
area.  That is, given a potential function P, our goal is to
find a surface along which the integration over P is
minimal.  The energy of the 3-D model has the following
form:

E(S)  =  Qòò w||¶S/¶a||2 + P(S(a)) da

= wA(S) + Qòò P(S(a)) da, (1)

where  S is a surface in R3; Q is a bounded region in S; A
is the area of the surface; w is a constant; and da is the
element of area.  

Now the minimization problem is to find the
optimal surface that minimizes Eq. (1).  For each point p,
we first calculate the value of minimal action Um that
represents the minimal energy along the curve between pm

and p.

Um (p)= inf {  Cò P(C(s)) ds },  (2)

where s is the arclength parameter; C(L) = p; and L is the
length of the curve C.

For simplicity, we assume that the surface S is
bounded by M points, {p1, p2, ..., pM} in R3.  Given the
minimal action values Un to pn (where n = 1..M), the
minimal surface bounded by pn (i.e., p1, p2, ..., pM) is the
set of coordinate points pg = (xg, yg, zg) that satisfy

n
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n
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Un (p) }, p Î R3, (3)

Next, we need to determine the U value which
can be found as solution of the Eikonal Equation.

|| ÑU  || = P , (4)

Sethian fast marching method [12] can then be used to
solve Eq. (4).  To calculate the U value in terms of 3-D
coordinates, the numerical method approximating U i,j,k is
extended from the 2-D case and is given by Eq. (5).

P2
 i,j,k = (max{u - Ui-1,j,k, u - Ui+1,j,k, 0})2

+ (max{u - Ui,j-1,k, u - Ui,j+1,k, 0})2

+ (max{u - Ui,j,k-1, u - Ui,j,k+1, 0})2, (5)

where the potential values P i,j,k = P(iDx, iDy, iDz) are on
a grid and Dx = Dy = Dz = 1 for simplicity.  Then Eq. (5)
is solved for Ui,j,k by selecting the largest u that satisfies
Eq. (5).

Once the U value is available, the minimal surface
of Eq. (3) can then be obtained by a simple steepest
gradient descent method [7].

3. 3-D Knowledge-based Global
Minimum Snake Algorithm

The KBGM-Snake algorithm was developed
using Matlab (The Mathworks, Inc., Natick, MA.) on a
SUN Sparc workstation designed to extract the lumen and
vessel wall boundaries on MR images [14].  The KBGM-
Snake algorithm can be described as follows:

The operator only needs to specify the center for
the first image in a sequential series of images. Then the
initial Snake points (i.e., end points) are detected by
incorporating the knowledge about the intensity changes.
There is a certain range of intensity between lumen and
vessel wall, and between vessel wall and neighboring soft
tissues.  In our method, this knowledge is taken into
account for the initial Snake points. This knowledge
provides important guidance for intensity change when
searching outward along a certain direction from the center.

Once the end points are selected, a Canny edge
detector [3] is used to create a rough estimate of every
possible edge contour within the image.  This edge
information is saved to a binary edge-detected map.  Then
the potential is formed as a function of the distance to the
closest edge in the edge-detected map.

Then, the 3-D Global Minimum Snake model
detects the global minimum of an active contour (Snake)
modelÕs energy for a series of images which represents a 3-
D image data.  This method interprets the Snake as an area
of minimal cost.  In our case, this area is bounded by two
end points (p1 and p2) from location z - 1 and another two
end points (p3 and p4) from location z.  Therefore, the
minimal surface bounded by p1, p2, p3, and p4  is the set of
coordinate points pg that satisfy
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Un (p) }, p Î R3 , (6)

Based on the method discussed in the previous section,
the energy function comes to rest at the minimal energy



position, and the Snake curves fit closely to the luminal
boundary.

  The final step is supervised by the operator who
may manually reposition any end points which have been
positioned erroneously.  The final Snake curves are then
saved for future references.  The luminal area is calculated
by integrating the area within the luminal boundary
contour.  The outer wall area is calculated by integrating
the area within the outer boundary contour of the vessel
wall.  The total wall area is calculated by subtracting the
luminal area from the outer wall area.

4. SIMULATION RESULTS

MR images of human carotid arteries were
acquired from a 1.5T whole body scanner (Signa, GE
Medical System). A sequential series (14 serial locations)
of carotid images were taken from five subjects.  Figure 1
shows the Snake curve identifying the vessel boundaries in
a series of one MR image.

To assess the accuracy of the KBGM-Snake
algorithm, all calculated areas were compared with
manually-traced boundaries.  The manual tracing was
conducted on the Independent Console (GE Medical
System) by a reader blinded from the KBGM-Snake
results.  The statistical method described by Bland and
Altman [1, 2] for comparing paired data was used to study
the area differences between manual and computer measured
data to determine if there is any 1) apparent bias by the
KBGM-Snake algorithm, 2)  significant differences, and 3)
differences as a function of spatial location.

The results of using the Bland and Altman
method are presented in Figure 2. The mean of the
difference of wall areas was 0.3 mm2 and the standard
deviation of the difference was 3.5 mm2.  In comparison
with the manual method, the percentage difference was
about 2%.  Figure 2 presents the Bland and Altman plots
for the wall areas.  As shown in Figure 2, the mean of the
difference was small for these areas.   In addition, the area
difference distributed evenly and the standard deviation was
relatively small.  These results suggested that: 1) there
was no systematic bias from using the KBGM-Snake
algorithm, 2) there was strong agreement between the
manual and the KBGM-Snake measurements as evidenced
by the small standard deviations, and 3) there was no clear
relationship between area difference (variance) and the size
of the average area.

To evaluate the reproducibility of the KBGM-
Snake algorithm, it was applied to a series of 14 images
five times.  The initial positions of the Snake points were
changed prior to each application.  The mean and standard
deviation of the lumen, outer wall and total wall areas were
calculated for each image.  These results were then
compared with those calculated using manually traced

vessel boundaries. The manual tracing was performed over
five consecutive days by the same reviewer with a custom
made algorithm written in IDL (Research Systems, Inc.).

Figures 3 and 4 plot the mean areas and the
standard deviation as determined by the KBGM-Snake and
the manual boundary tracing algorithms, respectively.  In
general, both the KBGM-Snake and the manual mean and
standard deviation plots show relatively small variances in
wall areas.  The KBGM-Snake numbers can be used as an
estimate of both inter and intra viewer variability.

Figure 1: A sample of the Snake curve identifying the
luminal boundary and outer wall boundary.
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Figure 2: The Bland and Altman plot of the differences
of wall areas measured manually and using the KBGM-
Snake algorithm for all five subjects.
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Figure 3: The mean and standard deviation of wall area
measurements using the KBGM-Snake algorithm five
times.
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Figure 4: The mean and standard deviation of wall area
measurements using a manual tracing algorithm five
times.

5. CONCLUSION

Based on a 3-D global minimum Snake model,  a
KBGM-Snake algorithm was developed and applied to
human carotid images for the purpose of identify the inner
(lumen) and outer boundaries of the vessel wall. Area
measurements were found to be accurate when compared to
human manual area measurements and are highly
reproducible.
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