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ABSTRACT

The signal-to-noise ratio of real data is rarely known with complete
certainty. However, Bayesian matched-field processing techniques
for ocean acoustic source localization often require the signal-to-
noise ratio (SNR) to be knowna priori. In this paper, the effects
of SNR mismatch on the performance of a Bayesian matched-field
source localization method, the optimum uncertain field processor
[A. M. Richardson and L. W. Nolte, J. Acoust. Soc. Am.89(5),
2280-2284 (1991)], are investigated. Theoretical and empirical
analyses show that when the maximuma posteriori (MAP) esti-
mate is utilized as the source location estimate, the localization
performance is unaffected by the uncertainty regarding the SNR,
provided that the assumed SNR is sufficiently high.

1. INTRODUCTION

Bayesian approaches to signal detection and parameter estimation
often require the signal-to-noise ratio (SNR) to be knowna priori.
Although this requirement is easily satisfied when the algorithms
are evaluated through computer simulations, it is nearly impos-
sible to achieve precise knowledge of the SNR in many real life
situations, such as experiments conducted in the open ocean, even
under controlled conditions. Natural and man-made ambient noise
sources, such as seismic disturbances, wind and waves, marine
life, and distant shipping traffic, cannot be completely eliminated
or exactly known. It is even more difficult to obtain accurate esti-
mates of the SNR in real-time applications, where the source signal
is not determined by the experimental protocol and its strength is
not precisely known. In practice, the SNR may be estimated in
the frequency domain by measuring the received signal not only
at the source frequency, but also at frequencies near those which
are known to contain the source signal. Presumably these addi-
tional measurements contain only noise, and from them an esti-
mate of the noise power, and consequently the SNR, may be ob-
tained. Alternatively, the uncertainties regarding the SNR may be
incorporated directly into the processor. In this paper, the effects
of SNR mismatch on the performance of a Bayesian matched-field
source localization processor which has been developed assuming
a known SNR are investigated. Based on the results of the theoret-
ical and empirical analyses, an approach for choosing an assumed
SNR when the actual SNR is not known is proposed which miti-
gates the issue of SNR mismatch.

2. BAYESIAN MATCHED-FIELD SOURCE
LOCALIZATION

The optimum uncertain field processor [1] (OUFP) is a Bayesian
a posterioriprobability method used for source localization in an
uncertain ocean environment. This technique calculates thea pos-
teriori probability of the parameter(s) to be estimated given the
received signal,r(t). The signal emitted by the source is assumed
to be a narrowband sinusoid with a known frequency,f0 [Hz], and

the observed time domain signal across the receiving array is as-
sumed to consist of the received source signal,s(S;	;�; t), plus
additive noise,n;

r(S;	;�; t) = s(S;	;�; t) + n: (1)

The received signal at each array element is a function of the
source position relative to the array element,S, the propagation
parameters associated with the ocean acoustic waveguide,	, and
the amplitude and phase parameters of the source,�.

The frequency transform of the received signal is of the form

P(r) = AH(S;	) +N; (2)

whereA is a complex Gaussian random variable with variance
�2A associated with the source parameters�, andH(S;	) is the
replica field for a narrowband source located at the positionS in
the ocean	. The observationP(r) is assumed to contain addi-
tive zero-mean Gaussian noiseN with a known spatial covariance
matrixQ. In this work, the noise is assumed to be isotropic, con-
sequentlyQ = �2N I.

Given the assumptions regarding the source amplitude,A, the
probability density function for the observation given the source
position and the environmental parameters is [1]

p(rjS;	) = 1

E(S;	) + 1
exp

�
1
2
jR(r;S;	)j2
E(S;	) + 1

�
; (3)

whereE(S;	) =
�
2

A

�2
N

Hy(S;	)H(S;	) is related to the energy

in the replica field andR(r;S;	) =
�
2

A

�2
N

Hy(S;	)P(r) is related

to the correlation between the replica field and the observed field.
The observed SNR is defined at the receivers and is given by

SNR = E
�
E(S;	)

	
=

�2A
�2
N

E
�
H
y(S;	)H(S;	)

	
(4)

whereS is the source position,	 is the mean ocean environment,
andE is the expectation operator.

The OUFP calculatesp(Sjr), thea posterioriprobability den-
sity function of the source locationS given the received signalr,

p(Sjr) =
R
	
p(rjS;	)p(Sj	)p(	)d	

p(r)
: (5)

Given the assumptions regarding the signal model, the probability
density function, or ambiguity surface, can be expressed as

p(Sjr) = C(r)p(S)�Z
	

1

E(S;	) + 1
exp

�
1
2
jR(r;S;	)j2
E(S;	) + 1

�
p(	jS)d	; (6)



whereC(r) is a normalization constant chosen to makep(Sjr) a
proper probability density function;

R
S
p(Sjr)dS = 1.

When the acoustic environment is known exactly, the environ-
mental integration performed by the OUFP is not necessary, and
the matched field processor (MFP) is used to calculate the ambi-
guity surface;

p(Sjr) = C(r)p(S)
1

E(S;	) + 1
exp

�
1
2
jR(r;S;	)j2
E(S;	) + 1

�
:

(7)
The MFP provides an upper bound on the attainable level of per-
formance since the environment is known exactly.

3. THEORETICAL ANALYSIS OF BAYESIAN
PARAMETER ESTIMATION

Before examining the specific application of Bayesian parameter
estimation theory to matched-field source localization, the general
approach underlying Bayesian techniques is analyzed in order to
gain an intuitive understanding of the role of the SNR in forming
the a posteriori probability of the parameter given the observed
data. Thea posterioriprobability of a desired parameter,�, given
the observed data composed of signal plus noise,x(�) = s(�)+n,
computed by Bayesian techniques consists primarily of two com-
ponents: (1) the information concerning the value taken by the
parameter conveyed by the data, represented byp(x(�)j�), and
(2) thea priori knowledge regarding the value of the parameter,
represented byp(�). This is recognized upon inspection of the
expression for thea posterioriprobability,

p(�jx(�)) = p(x(�)j�)p(�)
p(x(�))

: (8)

In this expression,p(x(�)) is a normalizing constant, so the char-
acter of thea posterioriprobability is determined completely by
the numerator.

The SNR appears in Eq. 8 upon substitution of the functional
forms of the probability density functions. Intuitively, the SNR
specifies the relative importance of the observed data and thea
priori knowledge in forming thea posterioriprobability density
function. For example, if an infinite SNR is assumed, thea pos-
teriori probability results solely from the observed data and thea
priori knowledge is not considered. Conversely, if an SNR of zero
(�1 dB) is assumed, thea posteriori probability results solely
from thea priori knowledge and the observed data is not consid-
ered. When an SNR between these two extremes is assumed, the
resultinga posterioriprobability is a combination of the contribu-
tion from the observed data and the contribution from thea priori
knowledge, where the SNR determines relative weighting of these
two components. This intuitive result is well-documented in signal
detection theory literature [2, 3, 4].

4. THEORETICAL ANALYSIS OF BAYESIAN
MATCHED-FIELD SOURCE LOCALIZATION

Now that an intuitive understanding of the role of the SNR in
Bayesian approaches has been established, the specific application
of Bayesian parameter estimation to matched-field source localiza-
tion will be examined to determine the effects of SNR mismatch on
localization performance. Thea priori distribution of the source
position is normally assumed to be uniform, reflecting the lack of
certain prior knowledge regarding the source location. As a result,
the characteristics of thea posterioriprobability are determined by
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Figure 1: Log probability of source location as a function of~E and
~R for various assumed SNR levels.

the behavior of thea posterioriprobability of the received signal
given the source position and environment,p(rjS;	). Given the
assumptions regarding the signal and noise, the natural log of this
probability can be expressed as [1]

ln p(rjS;	) =
1
2
F2 ~R

F ~E + 1
� ln(F ~E + 1); (9)

where ~E = HyH and ~R =
��HyP��2 : The assumed SNR, denoted

by F, is defined as the ratio of the source amplitude variance to the
noise variance,

F =
�2A
�2
N

: (10)

This expression reveals the log probability is a function of three
terms: ~R, ~E, and F, theassumedSNR. To understand the general
nature of the probability, it is instructive to examine its behavior as
a function of ~E and ~R for various levels of assumed SNR, shown
in Figure 1. Observe that for low assumed SNR, the log probability
is not a function of~R; it is completely determined by~E. More-
over, for high assumed SNR, the appearance of the log probability
surface does not change as a function of~E or ~R. The log proba-
bilities experience a scaling effect as the assumed SNR increases,
but the pattern remains the same.

4.1. Approximations to theA PosterioriProbability
The preceding observations can be clarified through an asymptotic
analysis of the log probability [Eq. (9)]. As F approaches zero, the
second term dominates the log probability expression;

lim
F!0 ln p(rjS;	) = � ln(F ~E + 1): (11)

As F approaches infinity, the first term is dominant;

lim
F!1 ln p(rjS;	) =

1
2
F2 ~R

F ~E + 1
: (12)
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Figure 2: Comparison of exact log probability expression [Eq. (9)]
and low SNR approximation [Eq. (11)] as a function of~E and ~R
for an assumed SNR of�50 dB.
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Figure 3: Comparison of exact log probability expression [Eq. (9)]
and high SNR approximation [Eq. (12)] as a function of~E and ~R
for an assumed SNR of 50 dB.

Based on the discussion on the role of the SNR in Bayesian pa-
rameter estimation, these results are intuitively appealing. For
low assumed SNR, the log probability depends only on the replica
fields, which corresponds to disregarding the observed data and
using only the prior knowledge regarding the acoustic propagation
to form the probability. For high assumed SNR, the log probability
depends only on the correlation between the data and the replica
field, corrected for the propagation effects. To confirm the validity
of the low and high SNR approximations, the exact and approx-
imate calculations are compared in Figures 2 and 3 for assumed
SNR levels of�50 and 50 dB, respectively. As these figures illus-
trate, the agreement between the exact (Pe) and approximate (Pa)
calculations is excellent. A quantitative measure of the agreement
is the RMS percent error, defined as

RMS%� =

vuut 1

N

NX
n=1

�
Pa � Pe

Pe
� 100

�2
: (13)

The RMS percent error for the high SNR case is 0.21%, and for
the low SNR case it is 0.0046%.

4.2. Monotonicity of theA PosterioriProbability
The surfaces shown in Figure 1 and the low and high SNR ap-
proximations to the log probability expression suggest that for low
and high assumed SNR the behavior of the probability (ambigu-
ity) surface is unaffected by the assumed SNR. If the probability
is monotonic with respect to the assumed SNR, then the MAP es-
timate of the source position is unaffected by the assumed SNR.
This implies the localization performance is independent of the
assumed SNR when the MAP estimate is utilized as the source lo-
cation estimate. The monotonicity of the probability can be evalu-
ated by calculating its derivative with respect to the assumed SNR,
F. When thea priori knowledge regarding the source position is

uniform, the probability is monotonic if it can be proven that

@

@F

�Z
	

p(rjS;	)d	
�
� 0: (14)

Physical constraints restrict the domain of	, so the limits of in-
tegration are bounded. A well-known theorem from real analysis
states that if a function and its partial derivative are continuous
over the domain of the integrand, then the derivative of the inte-
gral and the integral of the derivative are equal [5]. Inspection
of the expressions forp(rjS;	) [Eq. (3)] and its derivative with
respect toF ,

@

@F
p(rjS;	) =

exp
�

1

2
F2 ~R

F ~E+1

�
(F ~E + 1)3

h
1

2
F2 ~E ~R+F( ~R� ~E2)� 1)

i
;

(15)
reveals the conditions necessary to invoke this theorem are satis-
fied. Hence, the monotonicity test becomesZ

	

n
@

@F
p(rjS;	)

o
d	 � 0: (16)

If each of the terms in the integral is positive, then the integral
is also positive, and thus monotonic. In Eq. 15, the first term is
always nonnegative, so the monotonicity of this quantity depends
on the behavior of the second term. This quadratic equation in
F describes a parabola with a minimum atF =

~E2� ~R
~E ~R

and zero

crossings atF =
~E2� ~R�

p
( ~R� ~E2)2+2 ~E ~R
~E ~R

. Therefore, the proba-
bility is monotonic with respect to F for sufficiently low or high
assumed SNR. Hence, the probability computed by the OUFP is
also monotonic, provided that the assumed SNR is chosen such
that each of the terms in the integral is monotonic.

Although the low and high SNR levels required to achieve
monotonicity are not absolutely defined, this analysis shows the
probability is a monotonic function of the assumed SNR for suffi-
ciently low and high assumed SNR. These monotonic regions are
where the probability is dominated by either thea priori knowl-
edge (low SNR) or the observed data (high SNR). The middle
region where the probability is not a monotonic function of the
assumed SNR is where the transition from weighting primarily the
a priori knowledge to considering primarily the observed data oc-
curs.

5. ANALYSIS OF BAYESIAN MATCHED-FIELD SOURCE
LOCALIZATION PERFORMANCE

The goal of Bayesian matched-field source localization is to es-
timate the location of an underwater acoustic source consistently
and accurately. A performance metric utilized to quantitatively as-
sess the ability of source localization techniques to correctly iden-
tify the source position is probability of correct localization (PCL).
The probabilities are calculated through Monte Carlo simulation,
and then plotted as a function of SNR to formPCL curves [6]. In
general, the higher thePCL at a particular SNR, the better the per-
formance of the source localization processor. The effects of SNR
mismatch on the performance of Bayesian matched-field source
localization are examined throughPCL curves in order to quan-
tify the performance degradation that occurs as a result of SNR
mismatch.

The model for the ocean environment utilized in the following
simulations, including the environmental parameters and their as-
sociated uncertainties, is illustrated in Figure 4. It is an idealized
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Figure 4: Range independent shallow water ocean model.

range independent shallow water channel similar to an environ-
mental scenario provided for the May 1993 NRL Workshop on
Acoustic Models in Signal Processing [7].

A narrowband source at a frequency of 250 Hz is assumed to
be located somewhere in the ocean at a horizontal distance of 5 km
to 10 km from the vertical receiving array. The array consists of
25 elements with interelement spacing of 4 m, and fully spans the
water column. Normal mode theory [8] is utilized to compute the
replica fields, and the search area is gridded such that replica fields
are calculated every 50 m in range and 2 m in depth.

The overall source localization performance is summarized by
PCL curves, shown in Figures 5 and 6 for the MFP and the OUFP,
respectively. EachPCL curve represents the performance attained
for a particular assumed SNR as a function of the actual SNR. The
assumed SNR associated with eachPCL curve is displayed to the
right of the curve. For comparison purposes, asterisks are plotted
for data points where the actual SNR and assumed SNR are equal.
An estimated location is considered to be correct if it falls within
100 m (2 gridpoints) of the actual range and 4 m (2 gridpoints) of
the actual depth. The results illustrate that for both the MFP and
the OUFP, thePCL is unaffected when the assumed SNR is greater
than the true SNR, or high enough to be in the monotonic region.
However, the performance is degraded when the assumed SNR
is less than the true SNR and not in the monotonic region. These
empirical results provide quantitative evidence that when the MAP
estimate is utilized as the source location estimate, assuming a high
SNR is an appropriate method for managing an unknown SNR.

6. CONCLUSION

The theoretical and empirical findings presented here suggest that
when the MFP or OUFP is utilized for source localization and
the SNR is not known, as is often the case for real data, a high
SNR should be assumed. This approach does not affect the per-
formance level, as indicated by thePCL curves, and mitigates
the problem of SNR mismatch. The interpretation of the am-
biguity surfaces as true probabilities is no longer accurate when
the SNR is not correctly matched, but the behavior of and fea-
tures present in the ambiguity surface remain the same and the
MAP estimate is not affected. Hence, the performance attained by
Bayesian matched-field source localization, as measured byPCL
curves, is not degraded as long as the assumed SNR is greater than
the assumed SNR, or high enough to be in the monotonic region.
However, when the assumed SNR is less than the true SNR and not
in the monotonic region, the performance of Bayesian matched-
field source localization suffers.
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Figure 5: MFPPCL curves for various assumed SNR levels as a
function of the actual SNR.
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Figure 6: OUFPPCL curves for various assumed SNR levels as a
function of the actual SNR.
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